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It is widely believed that sleep is critical to the consolidation of learning and memory. In some skill
domains, performance has been shown to improve by 20% or more following sleep, suggesting that sleep
enhances learning. However, recent work suggests that those performance gains may be driven by several
factors that are unrelated to sleep consolidation, inviting a reconsideration of sleep’s theoretical role in
the consolidation of procedural memories. Here we report the first comprehensive investigation of that
possibility for the case of motor sequence learning. Quantitative meta-analyses involving 34 articles, 88
experimental groups and 1,296 subjects confirmed the empirical pattern of a large performance gain
following sleep and a significantly smaller gain following wakefulness. However, the results also confirm
strong moderating effects of 4 previously hypothesized variables: averaging in the calculation of prepost
gain scores, build-up of reactive inhibition over training, time of testing, and training duration, along with
1 supplemental variable, elderly status. With those variables accounted for, there was no evidence that
sleep enhances learning. Thus, the literature speaks against, rather than for, the enhancement hypothesis.
Overall there was relatively better performance after sleep than after wakefulness, suggesting that sleep
may stabilize memory. That effect, however, was not consistent across different experimental designs.
We conclude that sleep does not enhance motor learning and that the role of sleep in the stabilization of
memory cannot be conclusively determined based on the literature to date. We discuss challenges and
opportunities for the field, make recommendations for improved experimental design, and suggest
approaches to data analysis that eliminate confounds due to averaging over online learning.
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The hypothesis that sleep plays a major role in the consolidation
and enhancement of learning has attracted substantial attention over
the last two decades, among both cognitive scientists and the popular
media. A December, 2013 literature search with the keywords sleep
and consolidation identified over 700 studies, with an annual publi-
cation rate exceeding 100 and, thus far, increasing exponentially. The
vast majority of those studies conclude in favor of some type of sleep
consolidation, inviting wholesale reconsideration of traditional cog-
nitive theories in which sleep is implicitly assumed to be unrelated to
learning and memory. The findings also open the door to potentially
important lines of translational work seeking to optimize the impact of
sleep on learning and memory through sleep scheduling, pharmaco-
logical, or other manipulations.

The sleep consolidation literature is best understood through
separate consideration of the declarative and procedural (primarily
perceptual and motor skill) domains (Plihal & Born, 1997; Smith,
2001; Stickgold, 2005; Walker & Stickgold, 2004). In the declar-

ative domain, the primary claim is that sleep stabilizes new learn-
ing (i.e., protects new learning from interference and forgetting;
for recent discussion see Mednick, Cai, Shuman, Anagnostaras, &
Wixted, 2011). In the procedural domain—the focus of the current
work—the usual finding is that performance following sleep is not
only better than performance after a matched waking period, but
also better than performance at the end of the previous day’s
training session. That finding constitutes the basis of the sleep-
based enhancement theory (e.g., Diekelmann & Born, 2007; Rob-
ertson, Pascual-Leone, & Miall, 2004; Walker, 2005), according to
which sleep consolidation in the procedural domain enhances
learning rather than merely stabilizing it.

In several recent studies, however, the sleep-based enhancement
hypothesis has been called into question (e.g., Brawn, Fenn, Nus-
baum, & Margoliash, 2010; Keisler, Ashe, & Willingham, 2007;
Nemeth et al., 2010; Rickard, Cai, Rieth, Jones, & Ard, 2008;
Sheth, Janvelyan, & Khan, 2008). Those researchers have identi-
fied a number of moderating variables that may account for at least
a portion of the performance improvement following sleep. There
are also recent data suggesting that, under some circumstances at
least, skill performance after sleep may be no better than after a
period of wakefulness (e.g., Cai & Rickard, 2009). Nevertheless,
the general presumption that sleep enhances learning remains
common in the most recent studies (e.g., Fogel et al., 2014;
Tucker, McKinley, & Stickgold, 2011).

To further explore the extent to which sleep consolidation
versus other factors can account for the observed sleep effects in
the motor domain, we conducted a quantitative meta-analytic
review of the empirical work on sleep and explicit motor sequence
learning, which constitutes the largest and most influential sublit-
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erature in the procedural domain. That task typically involves
training subjects on an explicitly defined, five (or more) element,
deterministic finger tapping sequence that consists of either tap-
ping each of the four fingers against its own keyboard key or the
four fingers against the thumb. Labeling the index as finger one,
the most commonly used sequence involves five taps: 4, 1, 3, 2, 4.
The training session involves a series of performance-break cycles
(e.g., 30-s performance blocks interleaved with 30-s breaks). The
test session after a sleep delay involves the same task and pattern
of performance-break cycles. In some studies, a matched wake
delay group is also included as a control. The primary dependent
measure is the rate of correct sequence completion, which is most
often calculated as either the number of sequences correctly com-
pleted per 30-s training block or the mean latency over a fixed
number of key presses or key press sequences within a block.

The core behavioral findings in that literature are that: (a) perfor-
mance after a delay involving sleep exhibits a robust performance
gain—often of 20% or more—compared with performance at the end
of training; and (b) when a matched wake control group is included,
the performance gain for that group is smaller than for the sleep group
and is often not significantly different from zero. Henceforth, the term
postdelay gain will refer to the grand average gain observed for the
combined sleep and wake groups in our sample, postsleep gain will
refer to the gain observed for sleep groups, and relative sleep gain will
refer to the difference between the gain following sleep and the gain
following wakefulness (i.e., postsleep minus postwake). Although the
postsleep and relative gains are the most theoretically pertinent em-
pirical phenomena, and the ones on which we will ultimately focus,
our primary analytical approach maximizes statistical power by fitting
multiple candidate predictor variables to the joint set of sleep and
wake groups; the overall observed gains in those analyses will be
referred to as postdelay gains. Importantly, the terms postdelay gain,
postsleep gain, and relative sleep gain are intended to refer only to the
empirical phenomena, not their theoretical interpretation.

The Current Review

Our primary goals in this review are to critically evaluate both
of the major theoretical claims about consolidation in the motor
learning and sleep literature. The first claim is that the empirical
postsleep gain reflects sleep-based enhancement of learning. If that
claim is correct, then the second claim, namely that consolidation
operates more effectively during sleep than during wakefulness,
follows naturally. If, however, the first claim is incorrect then the
second claim may still stand; namely, sleep-specific consolidation
may stabilize rather than enhance procedural learning.

Our approach to theoretical inference is twofold. First, we
consider the existing evidence that factors other than sleep con-
solidation may explain at least a portion of the observed gain
effects. Second, we conduct quantitative meta-analyses and
metaregressions to determine the predictive power of those factors
for experiments run to date. Those analyses are presented in the
Results section in the following order:

1. The primary analyses were conducted on the full set of
88 sleep and wake groups in our sample, where a group
refers to a single sample of subjects that is trained on the
motor sequence task and is then tested after a delay
involving either sleep or wakefulness. There were 65

sleep groups and 23 wake groups in our sample. The goal
of the primary analyses was to explore the role of several
previously hypothesized variables in explaining the post-
delay gain. Those variables include sleep status (wake vs.
sleep groups), which indexes the magnitude of the rela-
tive gain, along with a number of other variables de-
scribed below that may influence the postdelay gain and
hence the postsleep gain. Assessment of the predictive
power of those variables is optimized by jointly fitting
both sleep and wake groups.

2. Based on the primary analysis, a working model of the
important variables for explaining postdelay gain effects
is advanced. That model allowed us to evaluate the
magnitude of the relative gain effect in the literature (i.e.,
the difference in gain for sleep and wake groups) and to
determine whether the postsleep gain effect survives after
adjusting for the influence of nonconsolidation related
variables.

3. Following the primary analysis, a secondary analysis
limited to the set of 23 matched sleep–wake groups in the
sample will be conducted, allowing for a more refined
investigation of the relative gain effect and its causal
basis.

Primary Factors Hypothesized to
Moderate Gain Effects

The meta-analyses focus on five primary factors that have
previously been hypothesized to influence the postdelay gain and
(or) the relative gain: (1) sleep status (wake only vs. sleep groups),
which directly indexes the magnitude of the relative gain; (2) the
amount of data averaging in calculation of the prepost gain scores;
(3) training duration; (4) the build-up of reactive inhibition during
the course of training; and (5) the effects of time of day on
performance during the training and (or) test sessions. Based on
properties to be discussed below, we hypothesize that Factors 2
through 4 will primarily affect the postdelay gain but not the
relative gain (i.e., their effects will be equivalent for wake and
sleep groups) whereas time of training and testing (Factor 5) have
the potential to influence both the post delay and relative gains.

Unlike sleep status, Factors 2 through 5 have not been exten-
sively discussed in the literature. Below we elaborate on each of
them, summarize prior evidence for their effects on gain scores,
and specify their operationalization as predictors in the meta-
analyses.

Data Averaging

A nearly ubiquitous strategy for measuring postdelay gains in
this literature has been to calculate the difference between average
performance over some duration or number of trials at the end of
training (the pretest) and average performance over a roughly
equivalent duration or number of trials at the beginning of the test
session (the posttest). The range of data averaging across studies is
large, spanning from about 25 s of performance for both the pre-
and posttests to as much as 900 s per test. A large amount of
averaging has the advantage of yielding more precise estimates of
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each subject’s pretest and posttest scores and hence more statistical
power to detect a performance gain. However, calculation of gain
scores using that strategy runs the risk that learning that occurs
during the pretest and (or) posttest periods (i.e., online learning) is
incorporated into the gain score (Rickard et al., 2008; Robertson et
al., 2004).

The problem is illustrated in Figure 1. The dependent variable in
this example is the mean time per finger press across a block of trials
(measured in ms per key press), and hence learning yields smaller
values. The delay between training and test sessions is assumed in
Panel a to have no effect (including no sleep consolidation effect) on
either underlying skill or observed performance. In that case, perfor-
mance improvement both within and between sessions is expected to
follow a smooth, monotonically decreasing curve. For data averaged
over subjects, there is a preponderance of support for that expectation
across a wide variety of task domains (for performance curve reviews
see Heathcote, Brown, & Mewhort, 2000; Newell & Rosenbloom,
1981), with exceptions primarily in the special cases of discrete
strategy shifts that can occur in some task domains in the early phase
of training (e.g., Rickard, 2004) and extreme fatigue than can give rise
to worsening of performance toward the end of a long training session
(e.g., Adams, 1952).

Despite the fact that the between-session delay is assumed to
have no effect in Figure 1a, averaged prepost gain scores are
guaranteed, at the population level, to yield a postdelay perfor-
mance gain, given only the expected monotonic performance im-
provement. It should also be apparent that extending the range of
averaging further backward through training and further forward
through testing would exacerbate the effect.

Thus, the open question in this literature is not whether postdelay
gains as computed using prepost difference scores are confounded by
online learning (to some extent they almost certainly are), but whether
that confounding factor accounts for a theoretically meaningful por-
tion of the performance gain. At one extreme, averaging over online
learning could account for all of the postdelay gain (Figure 1a). The
alternative case, in which averaging is clearly not sufficient to explain
the postdelay gain, is illustrated in Figure 1b. Remarkably, there have
been no prior tests of those possibilities in the literature. In the
meta-analyses below, averaging is quantified as duration in seconds of
the pretest (duration of the posttest among included studies was
always identical to or closely approximated that of the pretest). For
studies in which each performance block was a fixed number of trials,
the duration of averaging was estimated from latency data that was
provided graphically.

Training Duration

Given that the rate of performance improvement decreases as a
function of practice, postdelay gains as estimated by averaged
prepost difference scores should, in the population, be greater in
short than in long duration training designs, holding the amount of
averaging constant. This effect is illustrated by comparison of Panels a
and c of Figure 1. In Panel a, a relatively large amount of training
is presumed, such that the rate of block-to-block improvement
toward the end of training is low. In that case, averaging over
online learning is expected to have a relatively small effect on the
prepost gain score. In Panel c, there is less training, the block-to-
block improvement rate is high at the end of training, and aver-
aging over online learning is expected to have a larger effect on the
gain score. Thus, the magnitude of the postdelay gain as measured
by prepost difference scores is expected to be negatively correlated
with the duration of training. In the metaregressions, training
duration is operationalized in seconds and corresponds to total
time on task (excluding breaks).

Reactive Inhibition

Empirically, reactive inhibition refers to performance wors-
ening that can accumulate during a period of continuous train-
ing (Hull, 1943). It tends to dissipate, at least in part, when brief
breaks are inserted between blocks of training. If there are
multiple performance-break cycles over a training session, as in
the motor sequence literature, performance can exhibit a scal-
loped effect, worsening during each uninterrupted performance
block but improving across blocks. Rickard, Cai, Rieth, Jones,
and Ard (2008) and Brawn, Fenn, Nusbaum, and Margoliash
(2010) demonstrated highly robust scalloped reactive inhibition
effects using the commonly employed 30 s–30 s performance-
break cycle, as shown for Rickard et al.’s (2008) massed
practice sleep group in Figure 2. The scalloped effect is evident
for that group after the first few 30 s blocks of each session. The
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Figure 1. Hypothetical relations between practice block, session, and
performance. Ovals represent the range of data used to find the pre- and
posttest means. Panel a: performance curve if there is no effect of the delay
between sessions. Panel b: performance curve if there is improvement due
to the delay between sessions. Panel c: performance curve if there is no
effect of the delay between sessions and a short training session.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

814 PAN AND RICKARD



absence of the scalloped effect during the first few blocks of
training in the massed group suggests that rapid learning during
that period masks any reactive inhibition effect. A briefer effect
of the same type at the beginning of the test session suggests
that the magnitude of reactive inhibition increases across the
first few performance-break cycles within a session.

In agreement with the bulk of the literature, in which 30 s–30
s cycles have been used, the massed practiced group in Figure
2 exhibited a highly significant postsleep gain after the 24-hr
delay between sessions, as indicated by both analysis of aver-
aged pre- and posttest data and by application of a novel (in this
literature) continuity test to be described later. However, that
gain may result from the differences in magnitude of reactive
inhibition at the end of training versus the beginning of the test,
and may not require a sleep consolidation interpretation. As a
test of that possibility, Rickard et al. (2008) reduced the reac-
tive inhibition effect in their spaced practice group by using a
10 s–30 s performance-break design. As shown in Figure 2,
there was no evidence for a postsleep gain for that group. For
additional evidence that is consistent with the hypothesis that
reactive inhibition resolves after a several minute delay see
Brawn et al. (2010) and Hotermans, Peigneux, Maertens de
Noordhout, Moonen, and Maquet (2006).

The two design factors that could influence the magnitude of
reactive inhibition are duration of performance and duration of
break within each performance-break cycle. There is no empirical
evidence to date as to which is more important across the range of
values that have been used in the literature (only performance
duration was manipulated by Rickard et al., 2008 and Brawn et al.,
2010). To explore that question, we treat performance duration
and break duration per cycle as two separate predictors in the
meta-analyses, each measured in seconds.

Time of Training and Testing

Two physiological variables that determine sleep propensity are
known to influence performance across a variety of tasks: circa-
dian rhythms and homeostatic sleep drive.

Circadian rhythms. Among the nonconsolidation factors that
may affect the observed postdelay and relative gains, circadian
rhythms, which vary on a 24-hr cycle under naturalistic conditions,
have received the most attention. In several studies, training per-
formance has been compared for matched morning and evening
groups, with no significant differences observed (Albouy et al.,
2013; Brawn et al., 2010; Doyon et al., 2009; Korman, Raz, Flash,
& Karni, 2003), suggesting that circadian influences on the prepost
gain scores may be negligible. Tempering that inference, however,
is the conclusion of Keisler, Ashe, and Willingham (2007) that
circadian rhythms may account for sleep gain effects for implicit
motor learning tasks (e.g., the implicit serial reaction time (SRTT)
task). Further, the possibility of a selective circadian effect at time
of testing has not previously been explored.

The probable form of any circadian influence can be inferred
based on the results of desynchronization experiments conducted
in a variety of task domains (for discussion see Blatter & Ca-
jochen, 2007). Desynchronization experiments allow circadian in-
fluences to be assessed while holding time since sleep (i.e., ho-
meostatic effects) constant. Although the pattern can be task
dependent, for simple skills and automatized memory retrieval
among healthy subjects, circadian factors tend to yield relatively
poor performance in the early morning, improvement through the
early afternoon, and worsening into the late evening. Among some
individuals there is a second order performance dip between ap-
proximately 2 p.m. and 4 p.m., although that effect is not always
observed in group-level data (Monk, 2005).

Homeostatic sleep drive (time since sleep). Physiological
sleep drive is determined jointly by circadian rhythms and time
since the last sleep period. As time since sleep increases, the
homeostatic component of sleep drive is said to increase. Although
less frequently acknowledged in the literature, some experimental
designs may have homeostatic confounds that stand independently
of any circadian effects. If, for example, subjects are trained in the
evening (in the context of relatively high homeostatic sleep drive)
and tested in the morning after sleep (lower sleep drive), and if the
level of homeostatic drive is negatively correlated with task per-
formance, then a postsleep gain could be observed based on
homeostatic influences alone.

Joint circadian and homeostatic effects. In the current meta-
analyses it is not possible to separate the effects of circadian and
homeostatic factors. Drawing on the literature outlined above,
however, joint circadian and homeostatic factors are expected to
exert a concave downward effect on performance across either
time of training, time of testing, or both. Specifically, the observed
postdelay gain should be relatively small in the morning, reach a
peak around midday, and become smaller again in the evening.
Examples of tasks exhibiting that effect include simple addition
(e.g., Hull, Wright, & Czeisler, 2003), mirror drawing, multipli-
cation, and code transcription speed (e.g., Kleitman, 1933), digit
symbol processing and verbal fluency (e.g., Allen, Grabbe, Mc-
Carthy, Bush, & Wallace, 2008), and psychomotor vigilance (e.g.,
Jewett et al., 1999). To test for a concave downward effect of time
of day—or indeed any linear or quadratic effect—we fitted both

Block

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

K
ey

 p
re

ss
 R

T 
(m

s)

150

200

250

300

350

400

450

500

Massed Group

Spaced Group

training session test session

Figure 2. Performance as a function of group (massed vs. spaced), block,
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linear and quadratic variables for both time of training and time of
testing, measured as number of hrs past midnight.

Secondary Candidate Predictors

Analyses of a set of secondary predictors of potential interest
were also conducted. Those predictors include the delay between
training and testing in hours, whether the task involved keyboard
tapping or finger-to-thumb tapping (task type), whether subjects
were children (� 18 years; child status), and whether subjects
were elderly (� 59 years; elderly status). Among the sleep groups,
the effect of a nap versus a full night of sleep (nap status) was
tested. Among the full night sleep groups for which sleep time was
reported, the effect of number of hours slept was tested.

Method

Literature Search

An extensive literature search was conducted to obtain a com-
prehensive set of empirical research studies on sleep and explicit
motor sequence learning. Included were online searches of four
databases to obtain peer-reviewed research articles, correspon-
dence with authors to obtain additional data and unpublished
manuscripts, ancestral searches of article reference lists, and fur-
ther searches of dissertation and other databases. In all searches,
we applied a 34-year date range from January 1, 1980 to June 17,
2014, the end date being the day on which the online search was
completed. This range well exceeded the entire span of published
articles in the sleep and motor sequence learning literature (which
at the time of this review has primarily occurred in the past decade
and a half).

Database searches. Four online databases were searched for
peer-reviewed research articles: EBSCOhost Academic Search
Premier, MEDLINE, PsycINFO, and Thomson Reuters Web of
Science. All searches involved the keyword sleep in combination
with each of these individual or binary terms: finger, finger-
sequence, finger-tapping, finger-thumb, finger-thumb opposition,
motor learning, motor sequence, sequence, and tapping. The four
database searches yielded 2,299 hits; 1,367 of them were dupli-
cated across databases, leaving 932 references for further review.
Those references were then entered into a three-stage review
process (see Figure 3) to determine suitability for inclusion in the
meta-analyses.

The first stage, title-level review, determined whether articles
had any possible relevance to sleep or memory consolidation. This
stage involved two raters (the authors of this review) indepen-
dently reading only the titles of each article. If the title referred to
(a) sleep in learning and memory, (b) time-based consolidation, or
(c) sleep-based consolidation, it was flagged for inclusion. If the
title unambiguously focused on other topics, it was not. Titles for
which no clear determination of the article content could be made
based on those criteria were also flagged for inclusion. If at least
one rater flagged an article, that article remained in consideration
for the next stage. Overall rater agreement was high (Cohen’s � �
0.86). Of the 932 articles entered into this stage of review, 603
were excluded and 329 survived.

The second stage, abstract-level review, identified empirical
research articles pertaining to sleep and motor memory consolida-

tion. This stage involved the same two raters independently read-
ing the abstracts of all articles that had survived the first stage of
review. If the abstract addressed sleep and motor learning, the
article was flagged for inclusion. If the abstract indicated that the
article was not an empirical research study (e.g., a review article or
commentary), it was excluded; if animal populations were used, or
if clinical populations were used (e.g., if participants in the study
had been diagnosed with developmental, neurological, physical,
psychiatric, or sleep disorders), it was also excluded. As in the first
stage, articles were always included if at least one rater indicated
that it should remain under consideration. Overall rater agreement
was high (Cohen’s � � 0.89). Of the 329 articles entered into this
stage of review, 222 were excluded and 107 survived.

The third stage, article-level review, served as the final assess-
ment for inclusion. This stage involved the same two raters reading
the full text of articles that survived the second stage of review.
There were six instances of disagreement between raters; those
discrepancies were resolved by subsequent discussion and mutual
agreement between raters. Of the 107 articles entered into this
stage of review, 78 were excluded and 29 were selected for
inclusion.

Inclusion criteria for third stage. In addition to eliminating
groups for which the necessary statistics were not reported, the
inclusion criteria below served to minimize study heterogeneity
beyond the predictor variables to be tested, as is generally recom-
mended in quantitative meta-analyses. Exclusion of articles was
based solely on the criteria summarized below and not on an

Database searches: 
 EBSCOhost, PsychINFO, 
MEDLINE, Web of Science 

Author correspondence: 
Request unpublished data,  
manuscripts in preparation 

Stage I. Title-level review: 
Relevant to sleep and/or memory consolidation?  

If possibly yes, include; if unambiguously not, exclude. 

Stage II. Abstract-level review: 
Discusses sleep and motor learning? If yes, include. 
Uses animal or clinical populations? If yes, exclude. 

Stage III. Article-level review: 
 Final screening against inclusion criteria  

to assess suitability for quantitative meta-analyses. 

Additional searches: 
Ancestral searches of article reference lists;  
dissertation and other databases searched. 

Figure 3. Flowchart of the literature search and selection process.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

816 PAN AND RICKARD



independent assessment of the research quality or on the appro-
priateness of the experimental design for the intended purpose.

1. The article must have involved an explicit motor se-
quence learning task in which participants articulate the
fingers on one hand in accordance with a repeating pat-
tern. Two closely related tasks qualified: finger-keyboard
(or button-box) tapping and finger-thumb tapping.

2. The article must have included at least one group in
which either a full night of sleep or a daytime nap
intervened between training and test sessions. For each
article with at least one qualifying sleep or nap group,
any matched waking control groups were included. A
small number of partial night sleep studies, in which
subjects were awakened midsleep for training or testing,
were excluded.

3. Identical motor sequence tasks must have been used
during both training and testing. Groups for which an-
other motor sequence task intervened between the train-
ing and test sessions, or was interleaved during testing,
were excluded. Groups with longer breaks inserted be-
tween the end of the main training session and the pretest
were excluded if the break resulted in significant perfor-
mance improvement on the pretest. Inclusion of those
groups could have contaminated the assessment of reac-
tive inhibition effects (which may be sensitive to break
duration as discussed earlier) on gain scores. By that
criterion, only the two massed practice groups of Brawn
et al. (2010) were excluded.

4. Both the sample size and the postdelay effect size mea-
suring performance rate must have been reported or de-
rivable. Design descriptions must have allowed for de-
termination of the values of all primary predictor
variables (sleep status, averaging, training duration, per-
formance and break duration during each performance-
break cycle, time of training, and time of testing). Where
only ranges were reported (e.g., for time of training or
testing), the midpoint of the range was used to estimate
the average value for the group. Results for accuracy in
this literature generally converge with those for correct
performance rate. Because accuracy has not always been
reported and because statistical tests on accuracy are
likely to have lower power, analyses were performed
only on correct performance rate.

5. Experiments involving pharmacological manipulations
were excluded, unless there was a healthy control group
or groups. In such instances, data from that group or
groups were included.

6. Data averaging in calculation of the prepost gain scores
must have occurred over approximately the same dura-
tion or number of blocks for the pretest and the posttest,
and those blocks must have been contiguous. Studies in
which pre- and posttest averaging encompassed the entire
training and test session were excluded. Averaging over
entire sessions is guaranteed to yield a large postdelay

gain given the large expected performance improvement,
particularly during approximately the first half of the
training session. Among the remaining groups, the lon-
gest duration of averaging was 120 s and not more than
one third of the training session. Among those groups,
which constitute the great majority of the literature, the
extent of influence of prepost averaging on the observed
postdelay gain is unknown. They could in the current
analyses prove to be either negligible or substantial.

7. If a study had multiple training and test sessions for a
given group of subjects, then the following rules applied.
For sleep groups, data from the training and test sessions
immediately adjacent to the first chronological sleep de-
lay interval were extracted for meta-analyses. In most
cases, this meant selecting the first chronological night
sleep delay; in two cases, this meant selecting a nap delay
over a subsequent night sleep delay (Korman, Dagan, &
Karni, in preparation; Korman et al., 2007). For the wake
groups, data from the training and test sessions immedi-
ately adjacent to the first waking delay interval were
extracted.

Ancestral searches and unpublished data. We conducted
ancestral searches on the reference lists of articles that survived the
three-stage review process, seeking to identify any additional
peer-reviewed research studies. That search resulted in the addition
of four articles to the meta-analyses, yielding a total of 33.

To combat publication bias and the “file drawer” issue (Strube
& Hartmann, 1983), we also contacted 11 sleep consolidation
researchers who have published recently on this topic to request
unpublished data, receiving nine responses. One unpublished data
set was obtained (Korman et al., in preparation). The other eight
researchers informed us that they had no unpublished data. In
addition, we performed online searches of ProQuest Dissertations
and Theses and Google Scholar, using the exact set of keywords as
used in the preceding online database searches (and specifying
master’s and doctoral dissertations in the former and keyword hits
in abstracts in the latter). We determined that all of the disserta-
tions with relevance to this review had been subsequently pub-
lished in peer-reviewed journals (and were already flagged for
inclusion in prior searches). Similarly, relevant hits on Google
Scholar were also duplicated in prior online or ancestral searches.

Missing or incomplete information. We contacted seven au-
thors to request clarifications and additional data on papers that
were included in the meta-analyses; all but one responded. In all of
these instances, author contact was necessary either to (a) obtain
necessary information to calculate effect sizes for specific groups;
or (b) quantify primary predictor variables (e.g., time of day for
training and testing).

Summary of literature search results. Overall, 34 articles
met the criteria for inclusion. Of these, print publication dates
ranged from July 2002 to August 2014. In total, 88 groups (65
sleep groups and 23 wake groups) were extracted from those
studies, encompassing 1,296 unique subjects. Study, group, the
values of the primary set of predictor variables, and the statistical
results are shown for all 88 groups in Table 1. Appendix A lists the
values of the secondary candidate predictors for each group, when
reported. As indicated in Table 1, 76 of the groups involved
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Table 1
List of Studies, Predictor Variables, and Effect Sizes

Reference Condition N

Primary predictors

d sv
Sleep
status

Train
time

Test
time

Training
duration

Perform-
break (s)

Data
avg. (s)

Walker et al., 2002 Group D 15 S 22 10 360 30–30 60 2.608 0.404
Group B 15 Wa 10 22 360 30–30 60 0.387 0.085
Group E 12 S 22 10 360 30–30 60 1.501 0.252
Group C 10 Wa 10 22 360 30–30 60 0.474 0.149

Walker et al., 2003 Group 1 10 S 22 10 360 30–30 90 1.369 0.296
Group 2 10 S 13 13 360 30–30 90 1.303 0.280
Group 3 10 S 13 13 720 30–30 90 2.277 0.592
Group 4 10 S 13 13 360 30–30 90 1.961 0.472

Korman et al., 2003 Exp. 1a 36 S 10 10 520 30–50 120 1.178 0.052
Exp. 3, overnight 8 S 21.5 9.5 520 30–50 120 2.411 0.956
Exp. 3, over-day 7 Wa 12.5 21 520 30–50 120 0.431 0.247

Kuriyama et al., 2004 Group 1 15 S 13 13 360 30–30 90 1.609 0.202
Group 2 15 S 13 13 360 30–30 90 1.864 0.244
Group 3 13 S 13 13 360 30–30 90 1.445 0.215
Group 4 14 S 13 13 360 30–30 90 1.189 0.159

Marshall et al., 2006 Sham 13 S 21.75 7.25 360 30–30 90 2.283 0.400
Dorfberger et al., 2007 Exp. 1, 9 yr olds 21 S 10.5 10.5 600 30–20 120 1.729 0.144

Exp. 1, 12 yr olds 21 S 10.5 10.5 600 30–20 120 1.747 0.146
Exp. 1, 17 yr olds 20 S 10.5 10.5 600 30–20 120 1.504 0.130

Rasch et al., 2007 Exp. I, odor 18 S 22 7 360 30–30 90 0.657 0.079
Exp. I, vehicle� 18 S 22 7 360 30–30 90 0.804 0.087
Exp. II, odor 17 S 22 7 360 30–30 90 0.250 0.070
Exp. II, vehicle� 17 S 22 7 360 30–30 90 0.502 0.077
Exp. III, odor 17 S 22 7 360 30–30 90 0.796 0.093
Exp. III, vehicle� 17 S 22 7 360 30–30 90 1.312 0.137
Exp. IV, odor 18 S 22 7 360 30–30 90 0.340 0.072
Exp. IV, vehicle� 18 S 22 7 360 30–30 90 0.530 0.073

Nishida and Walker, 2007 Nap 14 S 10 18 360 30–30 90 1.082 0.146
No nap 12 Wc 10 18 360 30–30 90 0.231 0.105

Korman et al., 2007 NoInt 9 S 9 9 520 30–50 120 1.670 0.448
NapNoInt 8 S 12.5 21 520 30–50 120 1.517 0.484
NoNapNoInt 8 Wc 12.5 21 520 30–50 120 0.456 0.203

Blischke et al., 2008 AMA, unguided 11 S 20 8 360 30–30 60 0.829 0.166
MAM, unguided 12 Wa 8 20 360 30–30 60 0.505 0.119

Wilhelm et al., 2008 Children, sleep 15 S 20 8 360 30–30 90 0.553 0.092
Children, wake� 15 Wa 8 20 360 30–30 90 1.936 0.258
Adults, sleep 15 S 22 8 360 30–30 90 1.211 0.148
Adults, wake� 15 Wa 8 22 360 30–30 90 0.563 0.093

Rickard et al., 2008 Exp. 1, sleep 16 S 22 10 360 30–30 30 0.245 0.084
Exp. 1, awake 16 Wa 10 22 360 30–30 30 �0.350 0.078
Exp. 2, massed 54 S 13 13 360 30–30 30 0.814 0.026
Exp. 2, spaced 55 S 13 13 360 10–30 30 �0.237 0.019

Morin et al., 2008 Motor sequence 13 S 21 9 360 30–30 90 1.783 0.280
Sheth et al., 2008 12 hr 44 S 23 11 360 30–30 30 0.535 0.029

24 hr 11 S 11 11 360 30–30 30 �0.241 0.118
Mednick et al., 2008 Nap 13 S 9.5 16 360 30–30 60 1.448 0.216

Placebo 18 Wc 9.5 16 360 30–30 60 1.768 0.180
Dorfberger et al., 2009 Exp. 2, all groups 60 S 10 10 600 30–30 120 1.742 0.045
Genzel et al., 2009 Undisturbed 12 S 21 11 360 30–20 90 1.273 0.210
Rasch et al., 2009 Placebo 32 S 22.5 7 360 30–30 90 0.467 0.037
Doyon et al., 2009 DaySleep 10 S 9 21 520 30–30 120 0.727 0.176

NoSleep 13 Wc 9 21 520 30–30 120 0.438 0.104
ImmDaySleep 9 S 12 20 520 30–30 120 1.523 0.398
NightSleep 13 S 21 9 360 30–30 120 1.966 0.320

Tucker and Fishbein, 2009 Full night 13 S 23 7.5 354 29.4–30 88.5 1.201 0.177
Cash, 2009 No rest 12 S 20.75 8.75 360 30–30 90 0.981 0.166
Cai and Rickard, 2009 1-night 17 S 9.5 17.5 532 23.6–30 23.6 �0.375 0.082

Wake 15 Wd 9.5 17.5 511 23.6–30 23.6 �0.179 0.081
2-night 11 S 9.5 17.5 575 23.6–30 23.9 0.028 0.113

Brawn et al., 2010 PM-spaced 14 S 21 9 440 10–30 60 0.270 0.088
AM-spaced 20 Wa 9 21 440 10–30 60 �0.532 0.065

Barakat et al., 2011 Motor sequence 12 S 21 9 360 30–30 90 1.051 0.175
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independent sets of subjects and 12 groups involved the same
subjects that were used in 12 of the other 76 groups.

Random Effects Meta-Analyses With
Robust Variance Estimation

Random effects meta-analyses (Borenstein, Hedges, Higgins, &
Rothstein, 2010; Raudenbush, 2009) were performed on the gain
score effect sizes:

d � (gain score) ⁄ s, (1)

where gain score is the pretest mean minus the posttest mean for
each group (or vice versa depending on whether the variable was
time to complete a fixed number of trials or the number of
sequences completed in a fixed amount of time) and s is the
standard deviation of the subject-level prepost difference scores
for each group. Where the gain score was not reported but paired
t tests or F tests for the gain score were, we derived the effect size
as follows:

d � t ⁄ n.5 or d � F.5 ⁄ n.5,

where n is the sample size.
When neither t nor F tests were reported but bar graphs of gain

scores with standard error bars were reported, d was estimated by
the following method. First, the height of the bar on the y-axis

scale (corresponding to the mean gain score) was estimated to the
precision of one row of computer screen pixels. An analogous
pixel analysis was then used to estimate the standard error. The
effect size for each group was computed as:

d � (gain score)(n.5) ⁄ standard error.

The sampling variability (sv) for each effect size was estimated
following Morris and DeShon (2002) for the case of repeated
measures gain scores:

sv � (1 ⁄ n)[(n � 1) ⁄ (n � 3)](1 � nd2) – d2 ⁄ c2,

where c is computed using the bias function (Hedges, 1982).
Two random effects, study and group (within study), were

estimated hierarchically, using the model:

Tij � Xij� � �i � �ij � εij,

where Tij is the estimated effect size for group i in study j, Xij is
the design matrix in study j, � is the vector of regression coeffi-
cients, �i is the study-level random effect, 	ij is the group-level
random effect, and εij is the sampling error.

Random effects meta-analysis assumes that the observed effect
size at each level of the hierarchy (i.e., for each study and each
group) is a random deviate from its own population effect size
distribution. The random effects approach thus accommodates

Table 1 (continued)

Reference Condition N

Primary predictors

d sv
Sleep
status

Train
time

Test
time

Training
duration

Perform-
break (s)

Data
avg. (s)

Tucker et al., 2011 Elderly sleep 16 S 9 9 360 30–30 90 0.100 0.073
Elderly wake� 16 Wa 9 21 360 30–30 90 �1.288 0.145
Young sleep 15 S 9 9 360 30–30 90 1.789 0.231

Wilhelm et al., 2012 Children-low 18 S 12.25 14.25 280 23.3–20 70.08 1.169 0.114
Children-low� 18 Wc 12.25 14.25 280 23.3–20 70.08 0.912 0.094
Children-med. 17 S 12.25 14.25 192 18.9–20 57 0.749 0.090
Children-med.� 17 Wc 12.25 14.25 192 18.9–20 57 �0.058 0.067
Adult-med. 18 S 12.25 14.25 28 14–20 42 1.358 0.132
Adult-med.� 18 Wc 12.25 14.25 27.2 13.6–20 42 0.957 0.097
Adult-high 15 S 12.25 14.25 140 10.6–20 33.6 0.571 0.093
Adult-high� 15 Wc 12.25 14.25 140 10.6–20 33.6 0.818 0.110

Sugawara et al., 2012 No-praise 16 S 13.5 13.5 360 30–30 90 2.250 0.294
Mednick et al., 2013 Study 2, placebo 30 S 6 15 360 30–30 90 1.388 0.074
Albouy et al., 2013 Sleep 15 S 13.5 13.5 350 21–15 42 0.669 0.099

Sleep deprived 15 Wb 13.5 13.5 350 21–15 42 0.183 0.079
Feld et al., 2013 Placebo 12 S 21.75 19.5 360 30–30 90 1.167 0.192
Ashtamer and Karni, 2013 24 hr 10 S 11.5 11.5 624 30–30 120 0.992 0.189

1 or 3 hr 30 Wd 10.5 13 600 30–30 120 1.278 0.068
Adi-Japha et al., 2014 Children 20 S 10 10 600 30–30 120 2.057 0.194

Adults 20 S 10 10 600 30–30 120 1.673 0.147
Fogel et al., 2014 Young, Nap 13 S 11 16 340.2 22.8–15 91.2 1.198 0.177

Young, No-Nap 15 Wc 11 16 340.2 22.8–15 91.2 0.589 0.094
Older, Nap 14 S 11 16 525 34.8–15 139.2 �0.380 0.085
Older, No-Nap 15 Wc 11 16 525 34.8–15 139.2 0.404 0.093

Korman et al., in preparation NapNoInt 11 S 12 20 520 30–50 120 �0.128 0.115
NoNapNoInt 10 Wc 12 20 520 30–50 120 �0.734 0.177

Note. Entries in the condition column correspond to group labels in the respective articles. In the condition column, each wake group is listed immediately
below its matched sleep group. Asterisks represent correlated groups (i.e., same subjects in two groups); each asterisked group is listed immediately below
its corresponding correlated group. In the sleep status column, superscripted letters for each matched pair of sleep-wake groups (placed on the sleep status
indicator of the wake group) indicate the type of experimental design: a � varied time; b � deprivation; c � nap; d � varied delay. Sleep status: S � sleep
group (full night or nap); W � wake group; Perform-break � duration of performance and break within each performance-break cycle.
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(and provides a quantitative estimate of) possible heterogeneity of
population effect sizes over articles and groups due to differences
in experimental design, sampled population, or other factors. In the
current model the residual variation of the effect size estimate Tij

can be decomposed as:

V(Tij) � �2 � �2 � 	ij,

where 
2 is the variance of the between-study residuals, �i, and �2

is the variance of the within-study residuals, 	ij, and �ij is the
known sampling variability of each group. Estimates of 
2 and (or)
�2 that are greater than zero raise the possibility that heterogeneity
is present and that fixed effects predictor variables may be needed
to fully explain differences in effect sizes over papers and (or)
groups within articles.

Given that the covariance structure of the effect size estimates is
unknown in this literature, we employed robust variance estima-
tion (Hedges, Tipton, & Johnson, 2010; Tanner-Smith & Tipton,
2014) in the model fitting. All meta-analyses were performed
using Stata (StataCorp LP, College Station, TX) and the macro
robumeta.ado, which can be downloaded from the Stata Statistical
Software Components archive (SSC).

The majority of effect size dependencies in our sample are in the
form of multiple independent subject groups within study (article).
There were only 11 pairs of correlated groups in which the same
subjects served in each group (each of those pairs is identified in
Table 1). We thus used the macro’s hierarchical weight-type
option, which accommodates dependencies due to independent
groups within study, as the best estimate of the effect size weights
(Tanner-Smith & Tipton, 2014). An advantage of the robust vari-
ance estimation approach in this case is that it is resistant to
potential biasing effect for the correlated group pairs. For refer-
ence, the Stata code for the final working model that will be
described later is provided in Appendix B.

Results

The primary meta-analyses are performed on the full set of sleep
and wake groups. After estimating the aggregate postdelay effect,
fits of individual predictors are described. Following that, simul-
taneous fits of previously hypothesized or individually significant
predictors are discussed, culminating in a final working model of
important predictors of the postdelay gain. That model is then used
to estimate the magnitude of the postsleep gain for representative
and theoretically important values of the predictor variables. Fi-
nally, to achieve further insight into relative gain, a secondary
meta-analysis limited to the 23 matched pairs of sleep–wake
groups is reported, and the effect of experimental design on the
observed relative gain is summarized.

Primary Meta-Analyses

In this analysis, a primary goal was to maximize statistical
power to detect effects of candidate predictor variables on the
postdelay gain. Toward that end, all 88 groups, including 23 pairs
of wake-sleep groups (46 total groups) and 42 additional sleep
groups, were included. Secondary analyses limited to the 23 pairs
or wake-sleep groups are reported later.

The weighted mean effect size for the postdelay gain was highly
significant, d � 0.83, p � .0001, 95% confidence interval (CI)

[0.61, 1.05], confirming a large postdelay gain aggregated across
wake and sleep groups. There was also a large between-study
residual variance component, 
2 � 0.27, the magnitude of which
can be appreciated by comparison to the median within-group
sampling variability, sv, of 0.14. The within-study residual vari-
ance, �2, was 0.13. If both of those values were near zero, then
there would be no evidence of heterogeneity in the sample and no
need to conduct metaregression analyses. As it stands, the aggre-
gate effect size appears to be strongly moderated by one or more
design, analysis, subject population, or other factors that vary at
both the article and the groups-within-article level, motivating the
following metaregression analyses.

Single predictor fits. Table 2 lists the results for the primary
and secondary predictor variables when each was introduced into
the random effects model in isolation, or, in the case of time of
training and time of testing, when the linear and quadratic com-
ponents were jointly fitted in isolation.

As predicted by sleep consolidation theory, the estimated sleep
status (i.e., relative gain) effect size was large and highly signifi-
cant: d � �0.64 (i.e., postdelay gain effect size was 0.64 smaller
for wake than for sleep groups). For sleep groups (combined full
night and nap) there was a large and highly significant postsleep
gain (d � 1.0, df � 19.0, p � .0001, 95% CI [0.75, 1.25]), whereas
for waking groups there was a much smaller but still significant
gain (d � 0.36, df � 12.9, p � .03, 95% CI [0.035, 0.68]). The
latter result is not predicted by the sleep-specific enhancement
account and suggests that at least some factors underlying the
postdelay gain are common to both wake and sleep groups.

Data averaging also significantly predicted effect size (at  �
.05). The predicted range from the smallest (25 s) to the largest
(120 s) amount of averaging among the groups was large, d �
0.74, suggesting that the majority of the postdelay gain in this
literature may reflect a data averaging artifact. There were also
significant effects of time of testing, time of testing squared, and
elderly status. In the latter case, however, the small degrees of
freedom limit interpretation (Tipton, in press). None of the other
primary predictors approached significance in the single predictor
fits. Among the set of secondary predictors fitted in isolation, only
elderly status was statistically significant, although there were
again too few degrees of freedom to support strong inference.

Among all of the single predictor fits described above, the value
of 
2 remained high (
 0.19), as did �2 (
 0.11), indicating that
more than one moderating variable underlies the heterogeneity
across studies and groups. That fact, combined with the generally
low multicollinearity among primary predictor variables, suggests
that statistical power to detect moderating effects will be increased
through metaregression involving multiple simultaneous predic-
tors.

Simultaneous fits of planned and individually significant
predictors. As the initial step in this analysis, we simultaneously
fitted the nine primary predictor variables (sleep status, data av-
eraging, performance duration, break duration, training duration,
linear time of training, quadratic time of training, linear time of
testing, and quadratic time of testing), plus elderly status, which
uniquely among the secondary predictors exhibited a potent influ-
ence on effect size. The results are shown in Table 3. Significant
predictors were sleep status, data averaging, training duration, the
linear and quadratic components of time of testing, and elderly
status. Performance duration exhibited a trend in the hypothesized
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duration, although there were too few degrees of freedom to
support strong inference.

We refined that model using an iterative elimination strategy
wherein the least significant predictor was removed on each iter-
ation of the model fit (e.g., Van den Bussche, Van den Noortgate,
& Reynvoet, 2009). The resulting model, which we will refer to as
the final working model (i.e., our final iteration of a model that is
subject to future refinement) is summarized in Table 4. The re-
gression coefficients for the surviving predictors were generally
larger in the final working model than in the individual predictor
fits. A notable exception is the sleep status (relative gain) predic-
tor, for which the regression coefficient in the final working model
was less than half that for the individual fits. It appears that some
of the variance associated with sleep status is shared with one or
more other predictors, a possibility that is examined as part of the
secondary analysis of relative gain.

The estimated value of 
2 was markedly reduced in the final
working model, from 0.27 when no predictors were in the model
to 0.08, suggesting that most, but perhaps not all, of the between

studies heterogeneity is accounted for by the model. The within-
article residual variance, �2, was reduced to zero.

Empirical Implications for Postsleep Gain

We next explored implications of the final working model for
the theory of sleep-based enhancement. The core phenomenon
supporting that theory is the empirical postsleep gain that is
observed in most studies. The model allowed us to estimate: (a) the
extent to which the magnitude of the postsleep gain can jointly
explained by the identified predictor variables, and (b) whether the
postsleep gain survives after adjusting for the confounding influ-
ences of those variables.

Ninety-five percent confidence intervals for the postsleep gain
are plotted in Figure 4 for representative values of three of the
primary predictor variables in the final working model: data av-
eraging in the calculation of pre and posttest scores, performance
duration per performance-break cycle, and combined linear and
quadratic components of time of testing. The plots represent pre-

Table 2
Individual Predictor Fits

Category Predictor k � SE df p 95% CI

Primary Sleep status (wake � 1) 88 �0.62 0.17 15.8 .002 [�0.97, �0.26]
Averaging 88 0.0078 0.003 10.6 .045 [0.0002, 0.016]
Performance duration 88 0.032 0.020 3.3 .20� [�0.028, 0.091]
Break duration 88 �0.002 0.014 5.4 .91 [�0.037, 0.034]
Training duration 88 0.0004 0.0008 4.2 .64 [�0.0018, 0.0026]
Train time 88 0.017 0.19 11.5 .40 [�0.025, 0.057]
Train time squared 88 �0.005 0.006 10.7 .42 [�0.0008, 0.012]
Test time 88 �0.056 0.024 12.0 .04 [�0.109, �0.002]
Test time squared 88 �0.002 0.0007 13.1 .014 [�0.0037, �0.0005]

Secondary Delay 88 0.0030 0.0071 4.62 .69 [�0.016, 0.022]
Child status (child � 1) 88 0.47 0.28 5.12 .16 [�0.26, 1.19]
Elderly status (elderly � 1) 88 �1.22 0.21 2.3 .02� [�2.01, �0418]
Task type (thumb � 1) 88 0.42 0.30 8.1 .19 [�0.26, 1.10]
Nap status (nap � 1) 65 �0.68 0.17 5.9 .710 [�0.3223, 0.499]
Time slept 49 �0.071 0.17 6.9 .69 [�0.48, 0.34]

Note. For dichotomous variables, the value of zero represents value that occurred most frequently and a value of one was used for the value that occurred
less frequently. For example, for the sleep status variable, sleep groups (n � 65) were assigned a value of zero and wake groups (n � 23) were assigned
a value of one. The level of the variable assigned a value of one is listed in parentheses beside the variable name. k � number of groups (effect sizes)
available for each variable; � � regression coefficient; SE � standard error; df � adjusted degrees of freedom; CI � confidence interval. An asterisk
indicates that the p-value is untrustworthy due to insufficient degrees of freedom (� 4). The time slept analysis excluded nap groups.

Table 3
Simultaneous Planned and Individually Significant Predictor Fits

Predictor � SE df p 95% CI

Sleep status �0.259 0.094 7.6 .026 [�0.47, 0.041]
Averaging 0.013 0.0022 6.3 .001 [0.008, 0.019]
Training duration �0.002 0.0006 6.6 .026 [�0.003, 0.0003]
Performance duration 0.031 0.011 3.2 .064� [�0.018, 0.026]
Break duration �0.0041 0.009 5.8 .660 [�0.018, 0.026]
Train time �0.052 0.103 5.6 .636 [�0.31, 0.21]
Train time squared 0.001 0.003 6.2 .715 [�0.007, 0.009]
Test time 0.381 0.114 11.2 .006 [0.13, 0.63]
Test time squared �0.014 0.003 11.1 .002 [�0.022, �0.006]
Elderly status �1.60 0.176 3.0 .003� [�2.16, �1.05]

Note. � � regression coefficient; SE � standard error; df � adjusted degrees of freedom; CI � confidence interval.
An asterisk indicates that the p-value may be untrustworthy due to insufficient degrees of freedom (�4).
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dictions for sleep groups, nonelderly subjects (as elderly subjects
did not exhibit a postsleep gain) and for the modal case in which
there is 360 s of training. It is important to note that these plots
represent predictions based on the final working model fit to all 88
groups, and not the data values themselves. Also, the width of the
confidence intervals across the panels varies depending on whether
the values of the moderating variables are densely versus sparsely
represented in the sample. For example, the majority of groups in
the sample involved 30 s performance duration per cycle (Panels c
and d), yielding relatively narrow intervals, whereas 10 s per cycle
(Panels a and b) is a more sparsely represented minimum value of
that variable, yielding wider intervals and lower confidence.

In each panel, the pronounced moderating influence of time of
testing (joint linear and quadratic terms) on postsleep gain is
apparent. The largest gain estimates are in the early afternoon with
progressive and substantial drop-off toward the early morning and
late evening. Panel a depicts estimates when there is zero data
averaging (i.e., for the important hypothetical case in which there
is no pre- or posttest averaging and thus minimal online learning
confound in the gain score values) and for the minimum perfor-
mance duration in the sample (10.0 s; corresponding to the lowest
hypothesized reactive inhibition confound in the sample). Across
the full range of time of testing in that panel, there is no statisti-
cally significant postsleep gain. Rather, there is a significant per-
formance worsening after sleep when testing occurs in the morning
or evening. Even in the early afternoon, the confidence intervals
extend only slightly above zero.

Panel b illustrates the profound effect of data averaging on sleep
gain. When averaging is set to its modal value of 60 s, and all other
variables are set to the same values as in Panel a, the mean effect
size is shifted upward by d � 0.80 at the roughly 2 p.m. perfor-
mance peak. In Panel c, averaging is again set at 60 s, but
performance duration per block is increased to its maximum (and
modal) value among the groups of 30 s. There is a substantial
increase (d � 0.63 at 2 p.m.) in the estimated postsleep gain
relative to Panel b, illustrating the predicted reactive inhibition
effect. Finally, predictions for the jointly extreme values of
averaging (120 s) and performance duration (30 s) are shown in
Panel d.

Overall, Figure 4 illustrates a remarkable degree of joint pre-
dictive power of time of testing, data averaging, and performance
duration per cycle. From the smallest point estimate (the 10 p.m.
prediction in Panel a) to the largest (the 2 p.m. prediction in Panel
d), the change in the estimated effect size is 3.1, a value that
exceeds the traditional criteria for a large effect size for d (Cohen,

1988) by a factor of nearly 4.0. Further, when the confounding
influences of data averaging and reactive inhibition are minimized
(Panel a), the literature actually predicts, contrary to widely held
theory, that there is minimal or no postsleep gain.

Matched Analysis of Relative Gain

In the final working model described above, the effect of sleep
status, an index of relative gain, was statistically significant, but
modest. However, the experimental matching of all 23 pairs of
wake and sleep groups was ignored in that analysis, and a large
number of sleep groups with no matching wake groups were also
included. Those factors could have impacted both the magnitude
and the significance level of the estimated relative gain. Here we
report analyses limited to the experimentally matched sleep–wake
groups, analyses which should yield a more veridical estimate of
the relative gain effect. By focusing on only the 23 matched
groups, we were also able to investigate whether differences in
experimental design or other factors influence the magnitude of
relative gain.

To perform these analyses, we calculated the effect size, drelative,
corresponding to the difference between the mean gain score for a
sleep group and the mean gain score for the wake group. Treating
the sleep and wake groups for each pair as being independent,

drelative � �X�sleep � X�wake� ⁄ Sp,

where Sp is square root of the pooled variance.
As shown by Viechtbauer (2007), the sampling variability of

drelative can be approximated by

Svrelative � 1 ⁄ q � d2 ⁄ (2m),

where q � (nsleepnwake)/(nsleep � nwake) and m � nsleep � nwake �
2. The 95% confidence interval for each effect size can then be
calculated as

drelative � t95%(Svrelative)
.5,

with m degrees of freedom.
Among the 23 sleep–wake group pairs, 16 involved independent

samples for the two groups. For the remaining seven pairs the
samples were dependent; the same subjects were used in the sleep
and wake groups in experimental sessions run on separate days.
Following Morris and DeShon (2002), in analyses involving a
mixture of independent and dependent groups, effect sizes for all
groups should involve the same metric (i.e., the same type of

Table 4
Final Working Model Fits

Predictor � SE df p 95% CI

Sleep status �0.26 0.078 7.9 .012 [�0.44, �0.076]
Averaging 0.013 0.002 5.8 �.001 [0.008, 0.019]
Train duration �0.001 0.0005 6.0 .031 [�0.0026, 0.0002]
Performance duration 0.032 0.011 3.7 .049� [0.0003, 0.063]
Test time 0.39 0.098 9.1 .003 [0.175, 0.620]
Test time squared �0.014 0.003 11.3 �.001 [�0.021, �0.007]
Elderly status �1.61 0.195 3.1 .009� [�4.86, �0.96]

Note. � � regression coefficient; SE � standard error; df � adjusted degrees of freedom; CI � confidence
interval. An asterisk indicates that the p-value may be untrustworthy due to insufficient degrees of freedom (�4).
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variability measure). Our treatment of all group pairs as being
independent using the equations above achieves that goal. It should
be noted, however, that this approach may result in somewhat
inflated measures of sampling variability for the seven within-
subjects groups.

The estimated weighted mean of drelative over the 23 sleep–wake
pairs, based on the same random effects meta analytical method
that was used for the primary meta-analyses, was 0.44, p � .018,
95% CI [0.09, 0.79]. That effect is somewhat larger than the
relative gain effect in the final working model (i.e., the sleep status
effect; d � 0.29), and it can be viewed as a more veridical estimate
of the effect. Because data averaging, training duration, and per-
formance duration per cycle were exactly equated for all wake and
sleep pairs, those variables were not expected to, and in fact did
not, significantly predict the magnitude of the relative gain (all
ps � .68). Stated differently, there no significant interactions
between sleep-status and the other variables. However, statistical
power to detect those effects in this relatively small data set may
be limited. One additional factor, however, may have important
moderating effects on relative gain: experimental design.

Relative gain as a function of experimental design. Among
the 23 matched groups we identified four distinct experimental

designs, as illustrated in Table 5. Each design differs from the
others along one of four distinct dimensions: (a) whether there is
sleep deprivation for the wake group (deprivation design), (b)
whether the sleep group involves a nap rather than a full night of
sleep (nap design), (c) whether the time of training and testing
were different for the wake and sleep groups, with delay interval
held constant (varied time design), and (d) whether the delay
between training and testing was different for the wake and sleep
groups, with time of day for training and testing held constant
(varied delay design).

Each design has strengths and potential weaknesses. The depri-
vation design involves training and testing both groups at the same
time, depriving the wake group of sleep the first night after
training, and testing both groups after one or two nights of recov-
ery sleep. That design controls for both circadian effects and
homeostatic sleep drive effects. Its weakness is that any observed
relative gain could reflect either a sleep-specific consolidation
effect during the first night for the sleep group or impairment of
nonsleep specific consolidation during the night of sleep depriva-
tion for the wake group, due to stress or other factors (e.g., Gais,
Plihal, Wagner, & Born, 2000). The nap design typically involves
training and testing of both groups at the same time. The nap group
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Figure 4. Predicted effect size for the postsleep gain as a function of time of testing, data averaging, and
performance duration per performance-break cycle (Perform). The predictions are based on the final working
model fit to the data, and not on data values themselves.
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is allowed to nap (usually for no more than 90 min) whereas the
control (wake) group is not. This design controls for circadian
rhythm effects. A potential weakness is that a nap may partially
resolve homeostatic sleep drive that has accumulated since awak-
ening, resulting in demonstrably improved alertness and cognitive
performance that is nonspecific to recently trained tasks (e.g.,
Brooks & Lack, 2006; note, however, that experimental results
appear to depend on duration of nap, sleep stages involved, and
delay between awakening and testing). In the varied time design,
the wake group is trained in the morning, the sleep group is trained
at night, and both groups are tested after the same delay interval
(typically 8 or 12 hr). Like the deprivation and nap designs, it
controls for delay interval between training and testing. A weak-
ness is that the design does not control for time of training or
testing in the wake and sleep groups, and it is thus vulnerable to
both circadian and homeostatic confounds. Finally, the varied
delay design involves training of both groups at the same time,
testing the wake group several hrs later on the same day, and
testing of the sleep group 24 hr (or a multiple of 24 hr) after the
wake group is tested. It fully controls for both circadian and
homeostatic confounds. A potential weakness is that the delay
between training and the test is greater for the sleep than for the
wake group, possibly resulting in greater forgetting for the sleep
group that could counteract any sleep consolidation effect.

Among the included groups, there were nine varied time exper-
iments, one deprivation experiment, 11 nap experiments, and two
varied delay experiments (see Table 1). One of the varied time
experiments (Tucker et al., 2011) also involved a varied delay,
although not the 24-hr delay difference for test time that is defi-
nitional for that group. Furthermore, that design matched closely to
the other varied time designs with respect to time of testing (9 p.m.
for the wake group and 9 a.m. for the sleep group). By our
definitions, then, the most appropriate design category for that
study is varied time. One of the varied delay experiments (ex-
tracted from Ashtamker & Karni, 2013) involved a 22.5-hr rather
than 24-hr delay difference between wake and sleep groups, but
nevertheless best matched the varied delay design.

To explore the effect of experimental design, we constructed a
forest plot of the relative gain confidence intervals for all 23
sleep–wake pairs, ordered by experimental design, as shown in
Figure 5. In most cases, statistical inference based on the confi-
dence intervals matches that based on the hypothesis tests that
were conducted in the papers (when reported); that is, if a two-
tailed t test in the paper describing the experiment had rejected the
null hypothesis at  � .05, then the corresponding confidence
interval in Figure 5 did not include zero, and vice versa. There were
some exceptions, typically cases in which the null hypothesis was
rejected in the paper but zero was nevertheless marginally within the

confidence interval. Those discrepancies likely reflect the fact that the
confidence intervals on effect sizes are approximate and become less
precise for small samples (e.g., Viechtbauer, 2007).

The forest plot suggests that experimental design is a potent
factor in determining effect size. Only the varied time design has
to date yielded a consistent and robust relative sleep gain effect.
There is a slight trend toward a relative gain effect for the nap
design (random effects analysis limited to nap groups yielded p �
.29), but that trend is driven primarily by two of the 11 sleep–wake
pairs. There is virtually no evidence of a relative gain effect for
either the deprivation or varied delay designs.

Influence of time of testing and delay. Based on the final
working model, an important factor that may influence the ob-
served relative gain in at least one experimental design is time of
testing for the sleep versus wake groups of each pair. In particular,
the varied time design appears to be vulnerable to a time of testing
confound. The mean time of testing for the varied time experi-
ments was 9:03 p.m. for the wake groups and 9:36 a.m. for the
sleep groups, a difference of about 12.5 hr. In contrast, for the other
three designs the mean times of testing for the wake and sleep groups
were identical, or nearly so (deprivation: 1:30 p.m. and 1:30 p.m.;
nap: 4:49 p.m. and 4:49 p.m.; varied delay: 3:15 p.m. and 2:30 p.m.).
We can estimate the degree to which the relative gain effect for each
design might be due to time of testing by using the linear and
quadratic regression coefficients from the final working model fitted
to all groups (see Table 4). As shown in Figure 6, the predicted time
of testing effect is substantial for the varied time design but, as
expected, is negligible for the other three designs.

The current analyses also allow us to explore the potential
confounding influence of delay in the varied delay design. The
wake group in that design would be trained and tested on the same
day, with a delay between tests of several hours. The sleep group
is tested 24 hr after the same group. Forgetting after sleep and
during the waking hours prior to the test session may offset sleep
consolidation effects in that design, resulting in an underestimation
of the relative gain. The current results suggest, however, that the
confounding influence of the different delay periods in that design
is minimal. There was no trend toward an effect of delay (range:
8 to 72 hrs) when that predictor was fitted in isolation in the
primary analyses (see Table 2). Further, when delay was added to
the final working model, its point estimate approached zero
(0.0002), corresponding to an expected effect size change over the
24-hr delay difference between wake and sleep groups of only
0.005. Thus, delay, the most obvious potential confounding factor
in the varied delay design, may have negligible influence on the
observed relative gain.

In summary, the current analyses limited to the 23 matched sleep–
wake groups confirms the overall empirical relative gain effect. The

Table 5
Summary of Four Distinct Types of Sleep-Wake Comparison Designs

Design
Sleep deprivation in

wake group
Type of sleep in

sleep group
Controlled time of training/testing

for sleep/wake groups
Controlled delay interval for

both sleep/wake groups

Varied time No Full night No Yes
Deprivation Yes Full night Yes Yes
Nap No Nap Yes Yes
Varied delay No Full night Yes No
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results also raise the possibilities, however, that relative gain effects
may be conditional on experimental design and that the one design
that exhibits a consistent and robust gain effect (varied time) may be
susceptible to a time of testing confound.

Discussion

The discussion is organized into four sections. First, we
interpret results for each of the identified nonconsolidation
predictors, weigh evidence for them based jointly on prior
experimental work and the current meta-analytical results, and
consider what effect those predictors might have, if any, on
sleep consolidation processes. Second, we draw theoretical
conclusions about the nature of sleep consolidation in motor
learning with respect to both the sleep-based enhancement
hypothesis and the stabilization of learning hypothesis. Third,
we describe a continuity test based on curve fitting that circum-
vents the need to compute prepost difference scores, fully
eliminates confounds due to averaging over online learning, and
can clarify interpretation of duration of training effects in future
work. Fourth, we make recommendations for experimental de-
sign and data analysis for future work in this area. Finally, we
note implications of our behavioral findings for correlations
between sleep gain and electrophysiological measures that have
sometimes been observed in this literature.

Interpretation of Variables Moderating the
Postdelay Gain

Beyond sleep status, five variables were identified as predictors
of postdelay and (or) relative gain effects: data averaging, perfor-
mance duration, time of testing, training duration, and elderly
status. Each is discussed further below.

-2 -1 0 1 2 3 4

Effect Size 

Design Reference Sleep vs. wake group                                     
                      Overall effect size 
  
Varied time Walker et al., 2002 Group D vs. B   
  Group E vs. C  
 Korman et al., 2003 Exp. 3, overnight vs. over-day  
 Blischke et al., 2008 Unguided, AMA vs. MAM  
 Wilhelm et al., 2008 Children, sleep vs. wake*   
  Adults, sleep vs. wake*  
 Rickard et al., 2008 Exp. 1, sleep vs. awake  
 Brawn et al., 2010 PM-spaced vs. AM-spaced  
 Tucker et al., 2011 Elderly, sleep vs. wake*  

 
Deprivation Albouy et al., 2013 Sleep vs. sleep deprived  

 
Nap Nishida & Walker, 2007 Nap vs. no nap  
 Korman et al., 2007 NapNoInt vs. NoNapNoInt  
 Mednick et al., 2008 Nap vs. placebo  
 Doyon et al., 2009 DaySleep vs. NoSleep  
 Wilhelm et al., 2012 Children-low, sleep vs. wake*  
  Children-med., sleep vs. wake*  
  Adult-med., sleep vs. wake*  
  Adult-high, sleep vs. wake*  
 Fogel et al., 2014 Young, nap vs. no-nap  
  Older, nap vs. no-nap  
 Korman et al., in prep. NapNoInt vs. NoNapNoInt  

 
Varied delay Cai & Rickard, 2009 1-night vs. wake  
 Ashtamker & Karni, 2013 24 hr vs. 1 or 3 hr  
 
 

 

Figure 5. Forest plot of effect sizes for the 23 pairs of matched sleep–wake groups, with error bars displaying
95% confidence intervals. Asterisks represent correlated groups (i.e., same subjects in the sleep and wake
groups).

Figure 6. The mean relative gain effect size for each experimental design
(black bars). Predicted effects due to time of testing are depicted by the
gray bars. Numbers in parentheses above the bars are the number of
experiments per design.
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Data averaging. Given the well-established properties of
learning curves, data averaging in calculation of pre- and posttest
score must, to some extent, influence the magnitude of the post-
delay gain. The current results show, for the first time, that the confound-
ing effect of that averaging is substantial. Indeed, the averaging
artifact alone appears to account for the majority of the postdelay
gain effect. It would be straightforward to show the same effects
within most data sets in the literature. Consider, for example, the
massed and spaced practice groups in Figure 2. Because perfor-
mance in both groups decreases monotonically, greater averaging
would clearly result in larger gain scores. In our view, the only
viable way to resolve the averaging problem in future investigation
of postsleep gain effects is to employ curve fitting rather than
prepost difference scores to estimate gain effects, a topic that will
be discussed in a section below.

Duration of training. Training duration exhibited the hy-
pothesized negative correlation with the postdelay gain. Also,
from a purely rational perspective, the negative correlation must
hold in the population given only the very well-supported
assumption that performance improvement is a monotonically
decreasing function of practice. Only in long training sessions
is that assumption potentially wrong (due to massive fatigue
build-up), and there is no systematic evidence that it fails in this
literature. The negative correlation may also reflect a greater
degree of sleep consolidation in short versus long training
duration designs, a topic to which we will also return in the
section on curve fitting below.

Time of testing. The meta-analytical results suggest that
time of testing, but not time of training, has a large influence on
the postdelay gain. With respect to training, that conclusion is
consistent with the null effects of morning versus evening
training times that have been reported in a number of studies
(Albouy et al., 2013; Brawn et al., 2010; Doyon et al., 2009;
Korman et al., 2003). Given that selective time of testing effects
have not previously been evaluated, however, it will be impor-
tant to experimentally confirm that effect and to more fully
tease apart the effects of time of training and testing on not only
gain scores but also performance during the training and test
sessions.

It is an open question why time of testing would have a more
potent effect on performance than does time of training. One
possibility is that situational factors that are unique to the
training session may allow subjects to maintain a high level of
alertness and motivation at all times of day, largely overriding
or suppressing circadian and homeostatic influences. During the
training session, subjects may have evaluation apprehension
about being in a novel lab setting. The task is also novel,
initially requiring executive processes and possibly declarative
memory engagement. During training subjects undergo rapid
and presumably reinforcing learning. In our lab, it has not been
unusual for subjects to spontaneously comment that the training
session was mildly “fun” or “game-like.” None of those subject
mood states or experiences is likely to be present to the same
extent during the test session: The lab context is familiar,
performance improvements are smaller, and the task is presum-
ably less engaging. Under those conditions, the effects of cir-
cadian and homeostatic factors may be stronger. Consistent
with that account, Hull et al. (2003) demonstrated that alertness
and motivation can exert influences on task performance that

are separable from both circadian and homeostatic effects.
Their data also suggest that high alertness levels may decrease
the influence of those factors on performance.

Whatever its basis, a selective time of testing effect raises an
important question regarding how to the theoretically assess gain
scores effects. At what time of day should the test be given such
that the observed postsleep gain score is not confounded by cir-
cadian or homeostatic influences? A conclusive answer awaits
theory development. Above, we have implicitly suggested one
hypothesis, namely that (a) during training (but not testing), sub-
jects are able to suppress negative circadian and homeostatic
effects, yielding near optimal performance throughout the day; and
(b) during testing, optimal performance occurs in the early after-
noon, when joint circadian and homeostatic effects may be most
favorable to task performance. If correct, that account implies that
the potential time of testing confound in the observed gain score
will be minimized then testing occurs in the early afternoon.

Reactive inhibition. Consistent with the hypothesis that reac-
tive inhibition can have a confounding influence on the postdelay
gain, longer performance durations within each performance-break
cycle predicted a larger postdelay gain. Inferences regarding that
finding are qualified, however, by the low degrees of freedom for
performance duration in the final working model fit. In essence,
the common use of 30-s performance durations in the literature
limits inference at the meta-analytical level. A strong case can be
nevertheless be made for a potent influence of reactive inhibition
on gain scores given the two randomized experiments on that topic
that were discussed earlier: Rickard et al. (2008) and Brawn et al.
(2010).

The current results suggest that duration of performance within
each cycle drives the reactive inhibition effect, whereas duration of
the break may not. The latter result, however, likely reflects the
limited range of break durations in the sample. As duration of
break approaches zero, it must have an influence on the degree to
which reactive inhibition is resolved between performance blocks.
At the other extreme is the Brawn et al. (2010) demonstration that
a 5-min break between training and the pretest substantially re-
duces the performance difference between massed and spaced
conditions.

Elderly status. For elderly subjects, there is a marked reduc-
tion in the magnitude of the postdelay gain that virtually eliminates
the postsleep gain effect, although a relative gain effect is observed
in most cases. That result raises the possibility that sleep-based
enhancement, but not sleep-based stabilization, is impaired in the
elderly. An alternative account, however, was advanced by
Tucker, McKinley, and Stickgold (2011). They observed that
elderly subjects exhibit markedly worse performance than do
young subjects on the first few blocks of the posttest (the tradi-
tional posttest period used for analysis) in both wake and sleep
conditions. However, rapid performance improvement after those
initial test blocks restores performance to levels that, relative to the
pretest, are statistically indistinguishable from that of young sub-
jects. A highly analogous pattern is also apparent in Fogel et al.
(2014). Those results raise the possibility that elderly subjects have
an unusually long warm-up period in the test session, but that any
effect that sleep may have on motor sequence performance occurs
equivalently for the young and the elderly.
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Do the Moderating Variables Causally Influence
Sleep Consolidation?

There are two conceptually distinct accounts of the effect of each of
the moderating variables discussed above. One possibility is that their
effects are independent of any sleep-specific consolidation mecha-
nism. Alternatively, part or all of the effect of a given variable may
reflect a direct influence on the magnitude of sleep-based enhance-
ment. Further consideration supports the former account for the data
averaging, time of testing, and performance duration (indexing reac-
tive inhibition) predictors. Data averaging occurs after data are col-
lected, is unknown to subjects, and thus cannot moderate consolida-
tion processes. Similarly, because testing occurs after sleep, time of
testing cannot plausibly have a causal influence on sleep consolidation
processes (although time of training in principle could have). Reactive
inhibition effects also appear to be largely independent of any sleep
consolidation that may occur. In Rickard et al. (2008, Experiment 1),
the within-block reactive inhibition effects over both training and
testing sessions were indistinguishable for wake and sleep groups,
suggesting that sleep played no special role in resolving reactive
inhibition. Furthermore, Brawn et al. (2010) showed that an awake
posttraining break of only 5 min was sufficient to eliminate most of
the performance differences between groups trained under massed
and spaced conditions, suggesting that reactive inhibition effects can
resolve relatively quickly and before sleep onset.

In contrast to those variables, it is plausible that training dura-
tion moderates the magnitude of sleep-based enhancement. Short
duration training will generally allow more opportunities for ad-
ditional learning (i.e., achieved skill after short duration training
will be further from asymptote compared to long duration training)
and the magnitude of sleep-based enhancement may depend on the
amount of new learning that is possible. Alternatively, as we
hypothesized earlier, pre- and posttest averaging over a steeper
section of the learning curve in short duration training designs may
exacerbate online learning confounds relative to long duration
training. Those competing accounts of training duration can be
tested in future work by using the continuity analysis described
next.

Eliminating Online Learning Confounds Using a
Continuity Test

With respect to testing the sleep-based enhancement hypothesis,
the data averaging confound can profoundly bias results. How can
that problem be resolved? A strategy of minimizing data averaging
(e.g., to the last 10 s of training and the first 10 s of test) would
mitigate but not fully eliminate the online learning problem. Av-
eraging over short durations also has the negative consequence of
relatively low statistical power in the gain score test. It can also be
highly sensitive to transient performance patterns, such as
warm-up effects on initial test blocks. Addressing warm-up effects
by eliminating data from the first test block(s) prior to calculation
of prepost gain scores (e.g., Fischer, Hallschmid, Elsner, & Born,
2002) is ill-advised because it may exacerbate the online learning
confound in the prepost difference scores (i.e., learning make
occur on warm-up blocks that facilitates subsequent performance).

Fortunately, online learning confounds can be fully eliminated
in future work by abandoning the use of prepost difference scores
and instead using curve fitting procedures to compare performance

levels prior to and after the delay. Two curve fitting approaches are
potentially viable. First, an appropriate empirical function, such as
the three-parameter power function, can be fitted to training data
for each subject and the gain score analysis can be based on the
difference between the predicted posttest performance (based on
extrapolation of the training data fit) and the observed performance
on one of more test blocks (for a recent application of that
approach see Adi-Japha, Badir, Dorfberger, & Karni, 2014). Under
ideal conditions, that approach can fully resolve the online learning
confound due to data averaging. It has the potential weakness,
however, that subject-level data are often noisy and cannot be
assumed to follow an exact curve (e.g., Rickard, 2004), potentially
leading to inaccurate extrapolations.

Alternatively, statistical inference on data averaged over sub-
jects is possible using a continuity test; that is, by fitting a learning
curve simultaneously to training and test data, along with a con-
tinuity parameter that tests for an abrupt change in performance
between the training and test sessions. Here, we introduce and
apply one candidate approach to continuity testing in the hope of
promoting future application.

The null case in the continuity test assumes no effect of the
delay between the training and test sessions. As noted previously,
performance improvement in that case should be well described
across both training and test sessions by a smooth function with
monotonically increasing performance improvement rate. Across a
variety of tasks, the best fitting smooth function for data averaged
over subjects is the three-parameter power function (Newell &
Rosenbloom, 1981; see Heathcote et al., 2000, for discussion of
exponential and hybrid exponential-power functions as alterna-
tives). For cases in which learning gives rise to decreases in the
value of the dependent variable (e.g., mean latency per key press),
the power function takes the form,

p � a � b * N�c,

where p is performance level, N is the trial or block number, a is
asymptotic performance, b is the amount of improvement that is
possible with hypothetically infinite practice, and c is the nonlinear
improvement rate.

The continuity test involves fitting the selected smooth function
across training and test sessions, along with a discontinuity pa-
rameter between the last training session data point and the first
test session data point. For the power function, the most straight-
forward equation for the continuity test is:

p � k * (a � b * N�c) � (1 � k) * (a � b * N�c � y), (2)

where k takes a value of 1 for training session data and 0 for the
test session data and y is the discontinuity parameter. If the
estimate of y is small and nonsignificant, then a single smooth
function—the three-parameter power function in this example—is
sufficient to explain the performance curve across both the training
and test sessions, and no effects of the delay between sessions
(sleep related or otherwise) are indicated. If, on the other hand, y
accounts for a statistically significant portion of the variance in the
model fit, then an effect of the delay on performance can be
inferred and the value of y is a direct estimate of its magnitude.

Beyond eliminating online learning confounds, the continuity test
has several advantages over other approaches. First, it eliminates the
need to define an arbitrary range of data as constituting the pre- and
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posttests. Second, the estimate of y is a purer measure of the postdelay
gain than is a prepost difference score, and it is more directly com-
parable across studies. Third, unlike averaged prepost gain scores, the
results of the continuity test should be minimally sensitive to a
strategy of eliminating the first block of the test data to accommodate
possible warm-up effects, provided that the true experimental block
numbers are respected in the curve fitting. Fourth, because the con-
tinuity test is free of data averaging confounds and automatically
accommodates differential performance improvement rates at the end
of short versus long duration training, it allows the two candidate
accounts of the training duration effect to be disambiguated. If, for
example, a continuity analysis based on a well-fitting practice func-
tion were to reveal systematic decreases in the magnitude of postsleep
gain (y) over increasing training duration, then the hypothesis that
training duration moderates sleep-based enhancement would remain
viable, whereas the alternative hypothesis advanced here, in which the
training duration effect is solely a data averaging artifact, would not.

Finally, the continuity test can be statistically powerful. To illus-
trate, the power function continuity test was applied to the spaced
practice data of Rickard et al. (2008; refer to the current Figure 2).
Data from the first 10-s test block (block 37) in that group exhibit an
apparent warm-up effect and thus were not fitted. The estimate for y
was a nonsignificant �0.28 ms, 95% CI: �2.4, 1.8. Hence, the
continuity analysis is consistent with the conclusion of no postsleep
gain in the spaced group. Note also that the confidence interval is
narrow, indicating high statistical power. We also performed a con-
tinuity fit to the massed training data from Rickard et al. (2008), as
shown in Figure 2. As for the fit to the spaced data, the first 10 s of
test performance were eliminated to allow for possible warm-up
effects. The discontinuity estimate was large and highly significant for
that group: y � �28.0 ms, 95% CI [�36.7, �17.3]. The reactive
inhibition effect for that group, however, suggests that the disconti-
nuity is not due to sleep enhancement.

Summary of Implications for Sleep Consolidation in
Motor Sequence Learning

The sleep-based enhancement hypothesis. A positive post-
sleep gain is a necessary (but not sufficient) condition for inferring
sleep-based enhancement of learning. The current results indicate
that designs with an early afternoon test session are most condu-
cive to observing that gain. Even then, however, our meta-
analytical results are consistent with the hypothesis of no postsleep
gain when confounds due to online learning and reactive inhibition
are eliminated or substantially reduced. The spaced training sleep
group of Rickard et al. (2008), for which the test session occurred
in the early afternoon and a continuity analysis has been applied
(see Figure 2), is the only experiment to date in which all of those
criteria have been met. Consistent with the meta-analyses, no trend
suggesting sleep enhancement effect was observed. In a sense,
then, the literature as a whole predicts the Rickard et al. results. We
thus conclude that, to date, there is no compelling evidence for—
nor even a discernable trend suggesting—that there is sleep-based
enhancement in the domain of explicit motor sequence learning.

The sleep-based stabilization hypothesis. Both the main
meta-analyses and the supplementary analysis of matched sleep–
wake groups identified a statistically significant relative gain ef-
fect, suggesting that sleep may play a role in stabilization of
learning rather than enhancement. Those analyses also raise the

possibilities, however, that the magnitude of relative gain may
depend on experimental design and that time of testing may
constitute a serious confound for the varied time design. We thus
view the current literature as suggestive but not conclusive with
respect to sleep-based stabilization.

Recommendations for Experimental Design and
Data Analysis

Minimizing confounding influences on the postsleep gain.
If the research goal is to estimate the postdelay or postsleep gain,
then the following recommendations are offered:

1. Estimation of gain effects using prepost difference scores
should be abandoned in favor of curve fitting techniques.
The continuity test is the preferred approach in our view
because it is least likely to yield biased results (given that
the continuity curve fits the averaged data well across
both training and test sessions) and it yields a pure
estimate of the magnitude of the postdelay gain.

2. The traditional design involving 30 s-30 s performance-
break cycles should be abandoned given the evidence that it
results in a reactive inhibition confound, and alternative
designs with reduced performance duration per block used
instead. One promising possibility is to switch to 10 s
performance durations for each performance-break cycle.
That design appears sufficient to eliminate at least the ma-
jority of the reactive inhibition effect (Brawn et al., 2010;
Rickard et al., 2008). It also has the side benefit of produc-
ing less variable training performance (e.g., compare the
massed and spaced groups in Figure 2), facilitating appli-
cation of curve fitting techniques and likely improving sta-
tistical power. Should future studies adopt 10-s performance
duration designs, confirmation that reactive inhibition is
largely eliminated could be obtained through analysis of
within-block RT patterns (see Rickard et al., 2008).

3. The potentially strong influence of time of testing on gain
scores should be explicitly acknowledged as a factor that
may limit theoretical inference. Based on our results, testing
in the early afternoon will favor observation of postsleep
gain. If no gain is observed in that case, the results can be
confidently interpreted as challenging the sleep-based en-
hancement hypothesis. Although our results suggest that
time of training is not critical to the observed gain score, it
is nevertheless prudent when focusing solely on the post-
sleep gain and the sleep enhancement hypothesis to use a
24-hr delay, or some multiple thereof, that can fully equate
training and testing sessions with respect to physiological
circadian and homeostatic factors (although not necessarily
alertness or motivation; see prior discussion of the time of
testing effect).

4. To facilitate interpretation of results, scatter-plots of all
block-level training and test data, along with the fitted
performance curves, should be included.

5. To facilitate curve fitting, the test session should involve
multiple blocks, a reasonable default being the same number
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of blocks as the training session. That design approach
would also provide insight into possible differences in the
shape of the practice curve during testing versus training,
differences that may have theoretical implications (e.g.,
Tucker et al., 2011).

Minimizing confounding influences on the relative sleep
gain. We suggest that all of the design guidelines described above
be followed in this case, where applicable, to minimize potential
confounding influences and to provide veridical gain effect estimates
for both wake and sleep groups. Although there is no evidence in the
current analyses that factors such as reactive inhibition and training
duration have differential impact for wake versus sleep groups, small
effects along those lines may not have been detected.

The most commonly used design to explore relative gain, the
varied time of day design, should in our view be abandoned given the
current evidence that differences in time of testing for wake and sleep
groups in that design may account for at least a large portion of the
relative gain effect (see Figure 6). Going forward, the nap and varied
delay designs appear to be preferable. Both designs fully equate time
of training and time of testing for the wake and sleep groups, effec-
tively eliminating the possibility that circadian rhythms can differen-
tially influence gain scores for wake and sleep groups.

One limitation of nap studies as conducted to date is that they
have not tested for the possibility that the relative gain (when
observed) is the result of improvement of general cognitive func-
tion following a nap (i.e., due to partial resolution of homeostatic
sleep drive during the nap) as opposed to sleep-based consolida-
tion of prior learning. It may be possible to modify the design to
accommodate that possibility, however. One approach would be to
introduce a secondary motor task, in the test session only, for both
wake and sleep groups (such a task could also be used in other
designs, but is particularly relevant to the nap design issues dis-
cussed here). If performance on the secondary task is better for the
nap than for the wake control groups, then the theoretical inter-
pretation of any observed relative gain effect for the primary task
is unclear. The critical statistical test for relative sleep gain in that
case would require some form of adjustment for the sleep group’s
advantage on the secondary task. A potential complication of the
secondary task approach is that, as implied by the current meta-
analyses, homeostatic effects in the test session may be smaller for
the novel secondary task than for the non-novel primary task (e.g.,
subject may be more alert during the secondary task; see discus-
sion of time of testing effects). As such, the sleep–wake difference
for the secondary task may be attenuated, leading to overestimated
relative gain estimates even after secondary task performance is
used to adjust the relative gain estimate. Other limitations of nap
designs are that nap durations do not encompass the entire sleep
stage cycle, and that hormonal concentrations during naps differ
from those during a full night’s sleep.

The varied delay design has the primary candidate weakness that
the longer delay for the sleep group may yield greater forgetting that
masks sleep consolidation effects. Based on the current results, how-
ever, the delay interval appears to have inconsequential effects on gain
scores over a change of up to 72 hrs, suggesting that the estimation of
relative gain in that design is minimally influenced by delay interval.
To assure that reactive inhibition effects have fully resolved between
training and test session in the wake group, the delay for that group
should at least be several hours.

Perhaps the most promising approach to reaching a strong
theoretical conclusion about relative gain is to jointly pursue both
the modified nap designs and the varied delay design, as well as
any new designs that are plausibly free of major confounding
influences. If none of those designs generates evidence for a
relative gain effect, then the hypothesis of sleep-based stabilization
of learning should be rejected. Conversely, if there proves to be
converging evidence favoring a relative gain effect among all such
designs, then sleep-specific consolidation in the form of stabiliza-
tion would be well-supported. Divergent results from different
designs, as currently exists for the varied time, nap, and varied
delay designs, would invite deeper investigation of the underlying
causal factors before any strong theoretical conclusions regarding
relative gain effects would be warranted.

Implications for Electrophysiological Studies

Although our focus in this review is behavioral sleep consoli-
dation, it is important to also consider implications of our findings
for research on correlations between behavioral sleep gain and
electrophysiological patterns observed during sleep. Two aspects
of sleep have been of most interest in that literature: stage 2 NREM
sleep and sleep spindles.

In our sample of 34 articles, correlations between postsleep gain
and stage 2 NREM (measured either as duration or percent of total
sleep) were reported for 10 independent nap and full night sleep
groups in eight articles, with positive and statistically significant
results (at  � .05) for only four groups. Correlation coefficients
were not reported or were reported as an inequality for six of the
nonsignificant cases, precluding a more formal meta-analysis. Cor-
relation analyses have also been reported for six additional groups
in four studies that did not meet our inclusion criteria (Fischer et
al., 2002; Fischer, Nitschke, Melchert, Erdmann, & Born, 2005;
Holz et al., 2012; Wilhelm et al., 2011), none of which were
statistically significant. We conclude that the evidence for a cor-
relation between stage 2 NREM sleep and postsleep gain in this
literature is not yet compelling, a conclusion that is consistent with
the current behavioral finding of no significant postsleep gain after
adjusting for confounding variables.

Similarly, significant correlations between sleep spindles and post-
sleep gain were observed for only four of 43 cases over 11 groups and
nine papers. Further complicating interpretation, multiple correlations
were performed for most of those groups using different measures of
spindle activity (including density, spectral power, count, brain re-
gion, and quarter of the night). Spindle measures also varied in the use
of change measures (with pretraining sleep data as a baseline). Given
that no adjustments of significance levels to accommodate multiple
comparisons were made in most of those studies, the evidence to date
for a correlation between postsleep gain and sleep spindle activity is
not compelling.

If in the future robust correlations between some aspect of sleep
and post sleep gain are established, theoretical interpretation will have
to be reconciled with the current finding of no behavioral sleep-based
enhancement. A plausible account of such findings, in light of the
current results, would be that the electrophysiological correlations
with postsleep gain are a signature of sleep-based stabilization pro-
cesses, or perhaps reflect brain activity that is somehow causally
related to task training but is not related to consolidation of learning.
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Conclusions

The claim that sleep plays a critical role in the enhancement of
motor skill learning has, in the public eye and perhaps among most
researchers, moved beyond hypothesis and toward accepted fact.
Increasingly, the literature has treated sleep-based enhancement as a
given and has focused on exploring the generalizability of that phe-
nomenon and on more detailed theoretical accounts. The results of the
current meta-analyses, however, reveal a potential weakness in the
foundation for much of that work: when confounding variables that
are independent of any possible sleep consolidation effect are factored
out, there is no evidence in the literature for a performance gain that
can be attributed to sleep.

Although our results do not preclude the possibility that sleep-
based enhancement occurs in other motor domains (e.g., rotary
pursuit, figure tracing, implicit sequence learning), it seems likely
that the current results will generalize to those tasks, at least in
part. Averaged pre- and posttest data are commonly used to assess
postsleep gain throughout the motor consolidation literature, likely
resulting in some degree of contamination from online learning.
The effects of time of testing, performance duration per cycle, and
training duration effects are also strong candidates for generaliza-
tion to other tasks.

Although sleep-based enhancement of learning was not sup-
ported, we did observe a relative gain effect that is consistent with
sleep-based stabilization of learning, raising the possibility that
sleep-specific consolidation has the same behavioral effect in the
procedural domain that it does in the declarative domain. Strong
inference along those lines, however, should await further explo-
ration of the possible influence of experiment design on the mag-
nitude of the relative gain effect.

References
�References marked with an asterisk indicate studies included in the

meta-analysis.

Adams, J. A. (1952). Warm-up decrement in performance on the pursuit-
rotor. The American Journal of Psychology, 65, 404–414. http://dx.doi
.org/10.2307/1418761

�Adi-Japha, E., Badir, R., Dorfberger, S., & Karni, A. (2014). A matter of
time: Rapid motor memory stabilization in childhood. Developmental
Science, 17, 424–433. http://dx.doi.org/10.1111/desc.12132

�Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S.,
Rauchs, G., . . . Maquet, P. (2013). Interaction between hippocampal and
striatal systems predicts subsequent consolidation of motor sequence
memory. PLoS ONE, 8, e59490. http://dx.doi.org/10.1371/journal.pone
.0059490

Allen, P. A., Grabbe, J., McCarthy, A., Bush, A. H., & Wallace, B. (2008).
The early bird does not get the worm: Time-of-day effects on college
students’ basic cognitive processing. The American Journal of Psychol-
ogy, 121, 551–564. http://dx.doi.org/10.2307/20445486

�Ashtamker, L., & Karni, A. (2013). Motor memory in childhood: Early
expression of consolidation phase gains. Neurobiology of Learning and
Memory, 106, 26–30. http://dx.doi.org/10.1016/j.nlm.2013.07.003

�Barakat, M., Doyon, J., Debas, K., Vandewalle, G., Morin, A., Poirier, G.,
. . . Carrier, J. (2011). Fast and slow spindle involvement in the
consolidation of a new motor sequence. Behavioural Brain Research,
217, 117–121. http://dx.doi.org/10.1016/j.bbr.2010.10.019

Blatter, K., & Cajochen, C. (2007). Circadian rhythms in cognitive per-
formance: Methodological constraints, protocols, theoretical underpin-
nings. Physiology & Behavior, 90, 196–208. http://dx.doi.org/10.1016/
j.physbeh.2006.09.009

�Blischke, K., Erlacher, D., Kresin, H., Brueckner, S., & Malangré, A.
(2008). Benefits of sleep in motor learning—Prospects and limitations.
Journal of Human Kinetics, 20, 23–36. http://dx.doi.org/10.2478/
v10078-008-0015-9

Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A
basic introduction to fixed-effect and random-effects models for meta-
analysis. Research Synthesis Methods, 1, 97–111. http://dx.doi.org/
10.1002/jrsm.12

�Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2010).
Consolidating the effects of waking and sleep on motor-sequence learn-
ing. The Journal of Neuroscience, 30, 13977–13982. http://dx.doi.org/
10.1523/JNEUROSCI.3295-10.2010

Brooks, A., & Lack, L. (2006). A brief afternoon nap following nocturnal
sleep restriction: Which nap duration is most recuperative? Sleep, 29,
831–840.

�Cai, D. J., & Rickard, T. C. (2009). Reconsidering the role of sleep for
motor memory. Behavioral Neuroscience, 123, 1153–1157. http://dx.doi
.org/10.1037/a0017672

�Cash, C. D. (2009). Effects of early and late rest intervals on performance
and overnight consolidation of a keyboard sequence. Journal of Re-
search in Music Education, 57, 252–266. http://dx.doi.org/10.1177/
0022429409343470

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences.
Hillsdale, NJ: Laurence Erlbaum Associates.

Diekelmann, S., & Born, J. (2007). One memory, two ways to consolidate?
Nature Neuroscience, 10, 1085–1086. http://dx.doi.org/10.1038/nn0907-
1085

�Dorfberger, S., Adi-Japha, E., & Karni, A. (2007). Reduced susceptibility
to interference in the consolidation of motor memory before adoles-
cence. PLoS ONE, 2, e240. http://dx.doi.org/10.1371/journal.pone
.0000240

�Dorfberger, S., Adi-Japha, E., & Karni, A. (2009). Sex differences in
motor performance and motor learning in children and adolescents: An
increasing male advantage in motor learning and consolidation phase
gains. Behavioural Brain Research, 198, 165–171. http://dx.doi.org/
10.1016/j.bbr.2008.10.033

�Doyon, J., Korman, M., Morin, A., Dostie, V., Hadj Tahar, A., Benali, H.,
. . . Carrier, J. (2009). Contribution of night and day sleep vs. simple
passage of time to the consolidation of motor sequence and visuomotor
adaptation learning. Experimental Brain Research, 195, 15–26. http://
dx.doi.org/10.1007/s00221-009-1748-y

�Feld, G. B., Wilhelm, I., Ma, Y., Groch, S., Binkofski, F., Mölle, M., &
Born, J. (2013). Slow wave sleep induced by GABA agonist tiagabine
fails to benefit memory consolidation. Sleep, 36, 1317–1326.

Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms
memory for finger skills. Proceedings of the National Academy of
Sciences of the United States of America, 99, 11987–11991. http://dx
.doi.org/10.1073/pnas.182178199

Fischer, S., Nitschke, M. F., Melchert, U. H., Erdmann, C., & Born, J.
(2005). Motor memory consolidation in sleep shapes more effective
neuronal representations. The Journal of Neuroscience, 25, 11248–
11255. http://dx.doi.org/10.1523/JNEUROSCI.1743-05.2005

�Fogel, S. M., Albouy, G., Vien, C., Popovicci, R., King, B. R., Hoge, R.,
. . . Doyon, J. (2014). fMRI and sleep correlates of the age-related
impairment in motor memory consolidation. Human Brain Mapping, 35,
3625–3645. http://dx.doi.org/10.1002/hbm.22426

Gais, S., Plihal, W., Wagner, U., & Born, J. (2000). Early sleep triggers
memory for early visual discrimination skills. Nature Neuroscience, 3,
1335–1339. http://dx.doi.org/10.1038/81881

�Genzel, L., Dresler, M., Wehrle, R., Grözinger, M., & Steiger, A. (2009).
Slow wave sleep and REM sleep awakenings do not affect sleep depen-
dent memory consolidation. Sleep, 32, 302–310.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

830 PAN AND RICKARD

http://dx.doi.org/10.2307/1418761
http://dx.doi.org/10.2307/1418761
http://dx.doi.org/10.1111/desc.12132
http://dx.doi.org/10.1371/journal.pone.0059490
http://dx.doi.org/10.1371/journal.pone.0059490
http://dx.doi.org/10.2307/20445486
http://dx.doi.org/10.1016/j.nlm.2013.07.003
http://dx.doi.org/10.1016/j.bbr.2010.10.019
http://dx.doi.org/10.1016/j.physbeh.2006.09.009
http://dx.doi.org/10.1016/j.physbeh.2006.09.009
http://dx.doi.org/10.2478/v10078-008-0015-9
http://dx.doi.org/10.2478/v10078-008-0015-9
http://dx.doi.org/10.1002/jrsm.12
http://dx.doi.org/10.1002/jrsm.12
http://dx.doi.org/10.1523/JNEUROSCI.3295-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.3295-10.2010
http://dx.doi.org/10.1037/a0017672
http://dx.doi.org/10.1037/a0017672
http://dx.doi.org/10.1177/0022429409343470
http://dx.doi.org/10.1177/0022429409343470
http://dx.doi.org/10.1038/nn0907-1085
http://dx.doi.org/10.1038/nn0907-1085
http://dx.doi.org/10.1371/journal.pone.0000240
http://dx.doi.org/10.1371/journal.pone.0000240
http://dx.doi.org/10.1016/j.bbr.2008.10.033
http://dx.doi.org/10.1016/j.bbr.2008.10.033
http://dx.doi.org/10.1007/s00221-009-1748-y
http://dx.doi.org/10.1007/s00221-009-1748-y
http://dx.doi.org/10.1073/pnas.182178199
http://dx.doi.org/10.1073/pnas.182178199
http://dx.doi.org/10.1523/JNEUROSCI.1743-05.2005
http://dx.doi.org/10.1002/hbm.22426
http://dx.doi.org/10.1038/81881


Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law
repealed: The case for an exponential law of practice. Psychonomic
Bulletin & Review, 7, 185–207. http://dx.doi.org/10.3758/BF03212979

Hedges, L. V. (1982). Estimation of effect size from a series of indepen-
dent experiments. Psychological Bulletin, 92, 490–499. http://dx.doi
.org/10.1037/0033-2909.92.2.490

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance
estimation in meta-regression with dependent effect size estimates. Re-
search Synthesis Methods, 1, 39–65. http://dx.doi.org/10.1002/jrsm.5

Holz, J., Piosczyk, H., Landmann, N., Feige, B., Spiegelhalder, K., Ri-
emann, D., . . . Voderholzer, U. (2012). The timing of learning before
night-time sleep differentially affects declarative and procedural long-
term memory consolidation in adolescents. PLoS ONE, 7, e40963.
http://dx.doi.org/10.1371/journal.pone.0040963

Hotermans, C., Peigneux, P., Maertens de Noordhout, A., Moonen, G., &
Maquet, P. (2006). Early boost and slow consolidation in motor skill
learning. Learning & Memory, 13, 580–583. http://dx.doi.org/10.1101/
lm.239406

Hull, C. L. (1943). Principles of behavior. New York, NY: Appleton-
Century-Crofts.

Hull, J. T., Wright, K. P., Jr., & Czeisler, C. A. (2003). The influence of
subjective alertness and motivation on human performance independent
of circadian and homeostatic regulation. Journal of Biological Rhythms,
18, 329–338. http://dx.doi.org/10.1177/0748730403253584

Jewett, M. E., Wyatt, J. K., Ritz-De Cecco, A., Khalsa, S. B., Dijk, D. J.,
& Czeisler, C. A. (1999). Time course of sleep inertia dissipation in
human performance and alertness. Journal of Sleep Research, 8, 1–8.
http://dx.doi.org/10.1111/j.1365-2869.1999.00128.x

Keisler, A., Ashe, J., & Willingham, D. T. (2007). Time of day accounts
for overnight improvement in sequence learning. Learning & Memory,
14, 669–672. http://dx.doi.org/10.1101/lm.751807

Kleitman, N. (1933). Studies on the physiology of sleep: VIII. Diurnal varia-
tion in performance. American Journal of Physiology, 104, 449–456.

�Korman, M., Dagan, Y., & Karni, A. (in preparation). Motor learning con-
solidation gains in the elderly are under expressed unless a nap is afforded.

�Korman, M., Doyon, J., Doljansky, J., Carrier, J., Dagan, Y., & Karni, A.
(2007). Daytime sleep condenses the time course of motor memory
consolidation. Nature Neuroscience, 10, 1206–1213. http://dx.doi.org/
10.1038/nn1959

�Korman, M., Raz, N., Flash, T., & Karni, A. (2003). Multiple shifts in the
representation of a motor sequence during the acquisition of skilled
performance. Proceedings of the National Academy of Sciences of the
United States of America, 100, 12492–12497. http://dx.doi.org/10.1073/
pnas.2035019100

�Kuriyama, K., Stickgold, R., & Walker, M. P. (2004). Sleep-dependent
learning and motor-skill complexity. Learning & Memory, 11, 705–713.
http://dx.doi.org/10.1101/lm.76304

�Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boosting slow
oscillations during sleep potentiates memory. Nature, 444, 610–613.
http://dx.doi.org/10.1038/nature05278

�Mednick, S. C., Cai, D. J., Kanady, J., & Drummond, S. P. (2008).
Comparing the benefits of caffeine, naps and placebo on verbal, motor
and perceptual memory. Behavioural Brain Research, 193, 79–86.
http://dx.doi.org/10.1016/j.bbr.2008.04.028

Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S., & Wixted, J. T.
(2011). An opportunistic theory of cellular and systems consolidation.
Trends in Neurosciences, 34, 504–514. http://dx.doi.org/10.1016/j.tins
.2011.06.003

�Mednick, S. C., McDevitt, E. A., Walsh, J. K., Wamsley, E., Paulus, M.,
Kanady, J. C., & Drummond, S. P. (2013). The critical role of sleep
spindles in hippocampal-dependent memory: A pharmacology study.
The Journal of Neuroscience, 33, 4494–4504. http://dx.doi.org/10.1523/
JNEUROSCI.3127-12.2013

Monk, T. H. (2005). The post-lunch dip in performance. Clinics in Sports
Medicine, 24, e15–23, xi-xii. http://dx.doi.org/10.1016/j.csm.2004.12.002

�Morin, A., Doyon, J., Dostie, V., Barakat, M., Hadj Tahar, A., Korman, M.,
. . . Carrier, J. (2008). Motor sequence learning increases sleep spindles and
fast frequencies in post-training sleep. Sleep, 31, 1149–1156.

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in
meta-analysis with repeated measures and independent-groups designs. Psycho-
logical Methods, 7, 105–125. http://dx.doi.org/10.1037/1082-989X.7.1.105

Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, D. V., &
Howard, J. H., Jr. (2010). Sleep has no critical role in implicit motor
sequence learning in young and old adults. Experimental Brain Re-
search, 201, 351–358. http://dx.doi.org/10.1007/s00221-009-2024-x

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition
and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.

�Nishida, M., & Walker, M. P. (2007). Daytime naps, motor memory
consolidation and regionally specific sleep spindles. PLoS ONE, 2, e341.
http://dx.doi.org/10.1371/journal.pone.0000341

Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on
declarative and procedural memory. Journal of Cognitive Neuroscience,
9, 534–547. http://dx.doi.org/10.1162/jocn.1997.9.4.534

�Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during
slow-wave sleep prompt declarative memory consolidation. Science,
315, 1426–1429. http://dx.doi.org/10.1126/science.1138581

�Rasch, B., Pommer, J., Diekelmann, S., & Born, J. (2009). Pharmacolog-
ical REM sleep suppression paradoxically improves rather than impairs
skill memory. Nature Neuroscience, 12, 396–397. http://dx.doi.org/
10.1038/nn.2206

Raudenbush, S. W. (2009). Analyzing effect sizes: Random-effects mod-
els. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), Handbook of
research synthesis and meta-analysis (2nd ed., pp. 295–315). New York,
NY: Russell Sage Foundation.

Rickard, T. C. (2004). Strategy execution in cognitive skill learning: An
item-level test of candidate models. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 30, 65–82. http://dx.doi.org/
10.1037/0278-7393.30.1.65

�Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J., & Ard, M. C. (2008).
Sleep does not enhance motor sequence learning. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 34, 834–842. http://
dx.doi.org/10.1037/0278-7393.34.4.834

Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). Current
concepts in procedural consolidation. Nature Reviews Neuroscience, 5,
576–582. http://dx.doi.org/10.1038/nrn1426

�Sheth, B. R., Janvelyan, D., & Khan, M. (2008). Practice makes imper-
fect: Restorative effects of sleep on motor learning. PLoS ONE, 3,
e3190. http://dx.doi.org/10.1371/journal.pone.0003190

Smith, C. (2001). Sleep states and memory processes in humans: Proce-
dural versus declarative memory systems. Sleep Medicine Reviews, 5,
491–506. http://dx.doi.org/10.1053/smrv.2001.0164

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437,
1272–1278. http://dx.doi.org/10.1038/nature04286

Strube, M. J., & Hartmann, D. P. (1983). Meta-analysis: Techniques,
applications, and functions. Journal of Consulting and Clinical Psychol-
ogy, 51, 14–27. http://dx.doi.org/10.1037/0022-006X.51.1.14

�Sugawara, S. K., Tanaka, S., Okazaki, S., Watanabe, K., & Sadato, N.
(2012). Social rewards enhance offline improvements in motor skill.
PLoS ONE, 7, e48174. http://dx.doi.org/10.1371/journal.pone.0048174

Tanner-Smith, E. E., & Tipton, E. (2014). Robust variance estimation with
dependent effect sizes: Practical considerations including a software
tutorial in Stata and SPSS. Research Synthesis Methods, 5, 13–30.
http://dx.doi.org/10.1002/jrsm.1091

Tipton, E. (in press). Small sample adjustments for robust variance esti-
mation with meta-regression. Psychological Methods.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

831SLEEP AND MOTOR LEARNING

http://dx.doi.org/10.3758/BF03212979
http://dx.doi.org/10.1037/0033-2909.92.2.490
http://dx.doi.org/10.1037/0033-2909.92.2.490
http://dx.doi.org/10.1002/jrsm.5
http://dx.doi.org/10.1371/journal.pone.0040963
http://dx.doi.org/10.1101/lm.239406
http://dx.doi.org/10.1101/lm.239406
http://dx.doi.org/10.1177/0748730403253584
http://dx.doi.org/10.1111/j.1365-2869.1999.00128.x
http://dx.doi.org/10.1101/lm.751807
http://dx.doi.org/10.1038/nn1959
http://dx.doi.org/10.1038/nn1959
http://dx.doi.org/10.1073/pnas.2035019100
http://dx.doi.org/10.1073/pnas.2035019100
http://dx.doi.org/10.1101/lm.76304
http://dx.doi.org/10.1038/nature05278
http://dx.doi.org/10.1016/j.bbr.2008.04.028
http://dx.doi.org/10.1016/j.tins.2011.06.003
http://dx.doi.org/10.1016/j.tins.2011.06.003
http://dx.doi.org/10.1523/JNEUROSCI.3127-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.3127-12.2013
http://dx.doi.org/10.1016/j.csm.2004.12.002
http://dx.doi.org/10.1037/1082-989X.7.1.105
http://dx.doi.org/10.1007/s00221-009-2024-x
http://dx.doi.org/10.1371/journal.pone.0000341
http://dx.doi.org/10.1162/jocn.1997.9.4.534
http://dx.doi.org/10.1126/science.1138581
http://dx.doi.org/10.1038/nn.2206
http://dx.doi.org/10.1038/nn.2206
http://dx.doi.org/10.1037/0278-7393.30.1.65
http://dx.doi.org/10.1037/0278-7393.30.1.65
http://dx.doi.org/10.1037/0278-7393.34.4.834
http://dx.doi.org/10.1037/0278-7393.34.4.834
http://dx.doi.org/10.1038/nrn1426
http://dx.doi.org/10.1371/journal.pone.0003190
http://dx.doi.org/10.1053/smrv.2001.0164
http://dx.doi.org/10.1038/nature04286
http://dx.doi.org/10.1037/0022-006X.51.1.14
http://dx.doi.org/10.1371/journal.pone.0048174
http://dx.doi.org/10.1002/jrsm.1091


�Tucker, M. A., & Fishbein, W. (2009). The impact of sleep duration and
subject intelligence on declarative and motor memory performance: How
much is enough? Journal of Sleep Research, 18, 304–312. http://dx.doi.org/
10.1111/j.1365-2869.2009.00740.x

�Tucker, M., McKinley, S., & Stickgold, R. (2011). Sleep optimizes motor
skill in older adults. Journal of the American Geriatrics Society, 59,
603–609. http://dx.doi.org/10.1111/j.1532-5415.2011.03324.x

Van den Bussche, E., Van den Noortgate, W., & Reynvoet, B. (2009).
Mechanisms of masked priming: A meta-analysis. Psychological Bulletin,
135, 452–477. http://dx.doi.org/10.1037/a0015329

Viechtbauer, W. (2007). Approximate confidence intervals for standard-
ized effect sizes in the two-independent and two-dependent samples
design. Journal of Educational and Behavioral Statistics, 32, 39–60.
http://dx.doi.org/10.3102/1076998606298034

Walker, M. P. (2005). A refined model of sleep and the time course of
memory formation. Behavioral and Brain Sciences, 28, 51–64. http://
dx.doi.org/10.1017/S0140525X05000026

�Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002).
Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neu-
ron, 35, 205–211. http://dx.doi.org/10.1016/S0896-6273(02)00746-8

�Walker, M. P., Brakefield, T., Seidman, J., Morgan, A., Hobson, J. A.,
& Stickgold, R. (2003). Sleep and the time course of motor skill
learning. Learning & Memory, 10, 275–284. http://dx.doi.org/
10.1101/lm.58503

Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and
memory consolidation. Neuron, 44, 121–133. http://dx.doi.org/10.1016/
j.neuron.2004.08.031

�Wilhelm, I., Diekelmann, S., & Born, J. (2008). Sleep in children
improves memory performance on declarative but not procedural
tasks. Learning & Memory, 15, 373–377. http://dx.doi.org/10.1101/
lm.803708

Wilhelm, I., Diekelmann, S., Molzow, I., Ayoub, A., Mölle, M., & Born,
J. (2011). Sleep selectively enhances memory expected to be of future
relevance. The Journal of Neuroscience, 31, 1563–1569. http://dx.doi
.org/10.1523/JNEUROSCI.3575-10.2011

�Wilhelm, I., Metzkow-Meszaros, M., Knapp, S., & Born, J. (2012).
Sleep-dependent consolidation of procedural motor memories in chil-
dren and adults: The pre-sleep level of performance matters. Develop-
mental Science, 15, 506 –515. http://dx.doi.org/10.1111/j.1467-7687
.2012.01146.x

Appendix A

List of Secondary Candidate Predictor Variables

Reference Condition Task Delay
Hours
slept

Nap vs.
full night

Child
status

Elderly
status

Walker et al., 2002 Group D Finger-keyboard 12 7.6 Night No No
Group B Finger-keyboard 12 — — No No
Group E Finger-keyboard 12 7.9 Night No No
Group C Finger-keyboard 12 — — No No

Walker et al., 2003 Group 1 Finger-keyboard 12 7.8 Night No No
Group 2 Finger-keyboard 24 7.8 Night No No
Group 3 Finger-keyboard 24 7.8 Night No No
Group 4 Finger-keyboard 72 7.8 Night No No

Korman et al., 2003 Exp. 1a Finger-thumb 24 — Night No No
Exp. 3, overnight Finger-thumb 12 — Night No No
Exp. 3, over-day Finger-thumb 12 — — No No

Kuriyama et al., 2004 Group 1 Finger-keyboard 24 7.6 Night No No
Group 2 Finger-keyboard 24 7.6 Night No No
Group 3 Finger-keyboard 24 7.6 Night No No
Group 4 Finger-keyboard 24 7.6 Night No No

Marshall et al., 2006 Sham Finger-keyboard 8 7.6 Night No No
Dorfberger et al., 2007 Exp. 1, 9 yr olds Finger-thumb 24 6 Night Yes No

Exp. 1, 12 yr olds Finger-thumb 24 6 Night Yes No
Exp. 1, 17 yr olds Finger-thumb 24 6 Night Yes No

Rasch et al., 2007 Exp. I, odor Finger-keyboard 8.5 7.5 Night No No
Exp. I, vehicle� Finger-keyboard 8.5 7.5 Night No No
Exp. II, odor Finger-keyboard 8.5 7.5 Night No No
Exp. II, vehicle� Finger-keyboard 8.5 7.5 Night No No
Exp. III, odor Finger-keyboard 8.5 7.5 Night No No
Exp. III, vehicle� Finger-keyboard 8.5 7.5 Night No No
Exp. IV, odor Finger-keyboard 8.5 7.5 Night No No
Exp. IV, vehicle� Finger-keyboard 8.5 7.5 Night No No

Nishida and Walker, 2007 Nap Finger-keyboard 8 1.1 Nap No No
No nap Finger-keyboard 8 — — No No

Korman et al., 2007 NoInt Finger-thumb 24 7 Night No No
NapNoInt Finger-thumb 8 1.3 Nap No No

(Appendices continue)
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Appendix A (continued)

Reference Condition Task Delay
Hours
slept

Nap vs.
full night

Child
status

Elderly
status

NoNapNoInt Finger-thumb 8 — — No No
Blischke et al., 2008 AMA, unguided Finger-keyboard 12 8 Night No No

MAM, unguided Finger-keyboard 12 — — No No
Wilhelm et al., 2008 Children, sleep Finger-keyboard 12 9.5 Night Yes No

Children, wake� Finger-keyboard 12 — — Yes No
Adults, sleep Finger-keyboard 12 6.9 Night No No
Adults, wake� Finger-keyboard 12 — — No No

Rickard et al., 2008 Exp. 1, sleep Finger-keyboard 12 6.3 Night No No
Exp. 1, awake Finger-keyboard 12 — — No No
Exp. 2, massed Finger-keyboard 24 6.8 Night No No
Exp. 2, spaced Finger-keyboard 24 6.9 Night No No

Morin et al., 2008 Motor sequence Finger-keyboard 12 7.5 Night No No
Sheth et al., 2008 12 hr Finger-keyboard 12 7.2 Night No No

24 hr Finger-keyboard 24 7.6 Night No No
Mednick et al., 2008 Nap Finger-keyboard 7 1.2 Nap No No

Placebo Finger-keyboard 7 — — No No
Dorfberger et al., 2009 Exp. 2, all groups Finger-thumb 24 6 Night Yes No
Genzel et al., 2009 Undisturbed Finger-keyboard 62 6.7 Night No No
Rasch et al., 2009 Placebo Finger-keyboard 32 7 Night No No
Doyon et al., 2009 DaySleep Finger-keyboard 12 1.4 Nap No No

NoSleep Finger-keyboard 12 — — No No
ImmDaySleep Finger-keyboard 8 1.5 Nap No No
NightSleep Finger-keyboard 12 7.5 Night No No

Tucker and Fishbein, 2009 Full night Finger-keyboard 8.2 7.5 Night No No
Cash, 2009 No rest Finger-keyboard 12 6.4 Night No No
Cai and Rickard, 2009 1-night Finger-keyboard 32 7.5 Night No No

Wake Finger-keyboard 8 — — No No
2-night Finger-keyboard 56 6.8 Night No No

Brawn et al., 2010 PM-spaced Finger-keyboard 12 7.2 Night No No
AM-spaced Finger-keyboard 12 — — No No

Barakat et al., 2011 Motor sequence Finger-keyboard 12 7.5 Night No No
Tucker et al., 2011 Elderly sleep Finger-keyboard 24 5.7 Night No Yes

Elderly wake� Finger-keyboard 12 — — No Yes
Young sleep Finger-keyboard 24 6.1 Night No No

Wilhelm et al., 2012 Children-low Button-box 2 1.1 Nap Yes No
Children-low� Button-box 2 — — Yes No
Children-med. Button-box 2 1.1 Nap Yes No
Children-med.� Button-box 2 — — Yes No
Adult-med. Button-box 2 1.2 Nap No No
Adult-med.� Button-box 2 — — No No
Adult-high Button-box 2 1.1 Nap No No
Adult-high� Button-box 2 — — No No

Sugawara et al., 2012 No-praise Finger-keyboard 24 8 Night No No
Mednick et al., 2013 Study 2, placebo Finger-keyboard 9 1.5 Nap No No
Albouy et al., 2013 Sleep Finger-keyboard 72 — Night No No

Sleep deprived Finger-keyboard 72 — — No No
Feld et al., 2013 Placebo Finger-keyboard 11 7.4 Night No No
Ashtamer and Karni, 2013 24 hr Finger-thumb 24 8 Night Yes No

1 or 3 hr Finger-thumb 2 — — Yes No
Adi-Japha et al., 2014 Children Finger-thumb 24 6 Night Yes No

Adults Finger-thumb 24 6 Night No No
Fogel et al., 2014 Young, Nap Finger-keyboard 5 1.2 Nap No No

Young, No-Nap Finger-keyboard 5 — — No No
Older, Nap Finger-keyboard 5 0.8 Nap No Yes
Older, No-Nap Finger-keyboard 5 — — No Yes

Korman et al., in
preparation

NapNoInt Finger-thumb 8 1.5 Nap No Yes
NoNapNoInt Finger-thumb 8 — — No Yes

Note. Entries in the condition column correspond to group labels in the respective articles. In the condition column, each wake group is listed immediately
below its matched sleep group. In the hours slept column, a dash indicates a wake group or unreported sleep time. Asterisks represent correlated groups
(i.e., same subjects in two groups); each asterisked group is listed immediately below its corresponding correlated group.

(Appendices continue)
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Appendix B

Stata Code Used for the Final Working Model

Stata code used for the final working model:

robumeta d sleep-status averaging training-duration performance-duration test-time test-time-squared elderly-status,
study(paper) variance(sv) weighttype(hierarchical)
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